82 lines
3.1 KiB
Python
82 lines
3.1 KiB
Python
import pandas as pd
|
|
import csv
|
|
from collections import Counter, defaultdict
|
|
from nltk.tokenize import RegexpTokenizer
|
|
from nltk import trigrams
|
|
import regex as re
|
|
import lzma
|
|
|
|
|
|
class WordPred:
|
|
|
|
def __init__(self):
|
|
self.tokenizer = RegexpTokenizer(r"\w+")
|
|
self.model = defaultdict(lambda: defaultdict(lambda: 0))
|
|
self.vocab = set()
|
|
self.alpha = 0.001
|
|
|
|
def read_file(self, file):
|
|
for line in file:
|
|
text = line.split("\t")
|
|
yield re.sub(r"[^\w\d'\s]+", '', re.sub(' +', ' ', ' '.join([text[6], text[7]]).replace("\\n"," ").replace("\n","").lower()))
|
|
|
|
def read_file_7(self, file):
|
|
for line in file:
|
|
text = line.split("\t")
|
|
yield re.sub(r"[^\w\d'\s]+", '', re.sub(' +', ' ', text[7].replace("\\n"," ").replace("\n","").lower()))
|
|
|
|
def read_train_data(self, file_path):
|
|
with lzma.open(file_path, mode='rt') as file:
|
|
for index, text in enumerate(self.read_file(file)):
|
|
tokens = self.tokenizer.tokenize(text)
|
|
for w1, w2, w3 in trigrams(tokens, pad_right=True, pad_left=True):
|
|
if w1 and w2 and w3:
|
|
self.model[(w2, w3)][w1] += 1
|
|
self.vocab.add(w1)
|
|
self.vocab.add(w2)
|
|
self.vocab.add(w3)
|
|
if index == 300000:
|
|
break
|
|
|
|
for word_pair in self.model:
|
|
num_n_grams = float(sum(self.model[word_pair].values()))
|
|
for word in self.model[word_pair]:
|
|
self.model[word_pair][word] = (self.model[word_pair][word] + self.alpha) / (num_n_grams + self.alpha*len(self.vocab))
|
|
|
|
def generate_outputs(self, input_file, output_file):
|
|
with open(output_file, 'w') as outputf:
|
|
with lzma.open(input_file, mode='rt') as file:
|
|
for index, text in enumerate(self.read_file_7(file)):
|
|
tokens = self.tokenizer.tokenize(text)
|
|
if len(tokens) < 4:
|
|
prediction = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
|
|
else:
|
|
prediction = wp.predict_probs(tokens[0], tokens[1])
|
|
outputf.write(prediction + '\n')
|
|
|
|
def predict_probs(self, word1, word2):
|
|
predictions = dict(self.model[word1, word2])
|
|
most_common = dict(Counter(predictions).most_common(6))
|
|
|
|
total_prob = 0.0
|
|
str_prediction = ''
|
|
|
|
for word, prob in most_common.items():
|
|
total_prob += prob
|
|
str_prediction += f'{word}:{prob} '
|
|
|
|
if total_prob == 0.0:
|
|
return 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
|
|
|
|
if 1 - total_prob >= 0.01:
|
|
str_prediction += f":{1-total_prob}"
|
|
else:
|
|
str_prediction += f":0.01"
|
|
|
|
return str_prediction
|
|
|
|
wp = WordPred()
|
|
wp.read_train_data('train/in.tsv.xz')
|
|
wp.generate_outputs('dev-0/in.tsv.xz', 'dev-0/out.tsv')
|
|
wp.generate_outputs('test-A/in.tsv.xz', 'test-A/out.tsv')
|