164 lines
4.4 KiB
Python
164 lines
4.4 KiB
Python
from itertools import islice
|
|
import regex as re
|
|
import sys
|
|
from torchtext.vocab import build_vocab_from_iterator
|
|
import lzma
|
|
from torch import nn
|
|
import torch
|
|
from torch.utils.data import IterableDataset
|
|
import itertools
|
|
from torch.utils.data import DataLoader
|
|
import numpy as np
|
|
|
|
|
|
# def get_words_from_line(file_path):
|
|
# for index, line in enumerate(get_lines_from_file(file)):
|
|
# yield '<s>'
|
|
# for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
|
|
# yield m.group(0).lower()
|
|
# yield '</s>'
|
|
# if index == 10000:
|
|
# break
|
|
|
|
|
|
def get_words_from_line(line):
|
|
line = line.rstrip()
|
|
yield '<s>'
|
|
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
|
|
yield m.group(0).lower()
|
|
yield '</s>'
|
|
|
|
|
|
def get_words_lines_from_file(file_path):
|
|
with lzma.open(file_path, mode='rt') as file:
|
|
for index, line in enumerate(file):
|
|
text = line.split("\t")
|
|
yield get_words_from_line(re.sub(r"[^\w\d'\s]+", '', re.sub(' +', ' ', ' '.join([text[6], text[7]]).replace("\\n", " ").replace("\n", "").lower())))
|
|
if index == 50000:
|
|
break
|
|
|
|
|
|
vocab_size = 20000
|
|
|
|
vocab = build_vocab_from_iterator(
|
|
get_words_lines_from_file('train/in.tsv.xz'),
|
|
max_tokens=vocab_size,
|
|
specials=['<unk>'])
|
|
|
|
vocab.set_default_index(vocab['<unk>'])
|
|
# vocab=None
|
|
|
|
embed_size = 100
|
|
|
|
|
|
class SimpleBigramNeuralLanguageModel(nn.Module):
|
|
def __init__(self, vocabulary_size, embedding_size):
|
|
super(SimpleBigramNeuralLanguageModel, self).__init__()
|
|
self.model = nn.Sequential(
|
|
nn.Embedding(vocabulary_size, embedding_size),
|
|
nn.Linear(embedding_size, vocabulary_size),
|
|
nn.Softmax()
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.model(x)
|
|
|
|
|
|
def look_ahead_iterator(gen):
|
|
prev = None
|
|
for item in gen:
|
|
if prev is not None:
|
|
yield (prev, item)
|
|
prev = item
|
|
|
|
|
|
class Bigrams(IterableDataset):
|
|
def __init__(self, text_file, vocabulary_size):
|
|
self.vocab = build_vocab_from_iterator(
|
|
get_words_lines_from_file(text_file),
|
|
max_tokens=vocabulary_size,
|
|
specials=['<unk>'])
|
|
self.vocab.set_default_index(self.vocab['<unk>'])
|
|
self.vocabulary_size = vocabulary_size
|
|
self.text_file = text_file
|
|
|
|
def __iter__(self):
|
|
return look_ahead_iterator(
|
|
(self.vocab[t] for t in itertools.chain.from_iterable(get_words_lines_from_file(self.text_file))))
|
|
|
|
|
|
def train():
|
|
batch_size = 22000
|
|
|
|
train_dataset = Bigrams('train/in.tsv.xz', vocab_size)
|
|
|
|
device = 'cuda'
|
|
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
|
|
train_data_loader = DataLoader(train_dataset, batch_size=batch_size)
|
|
optimizer = torch.optim.Adam(model.parameters())
|
|
criterion = torch.nn.NLLLoss()
|
|
|
|
model.train()
|
|
step = 0
|
|
for x, y in train_data_loader:
|
|
# Transfer Data to GPU
|
|
x = x.to(device)
|
|
y = y.to(device)
|
|
# Clear the gradients
|
|
optimizer.zero_grad()
|
|
# Forward Pass
|
|
ypredicted = model(x)
|
|
# Find the Loss
|
|
loss = criterion(torch.log(ypredicted), y)
|
|
if step % 100 == 0:
|
|
print(step, loss)
|
|
step += 1
|
|
# Calculate gradients
|
|
loss.backward()
|
|
# Update Weights
|
|
optimizer.step()
|
|
torch.save(model.state_dict(), 'model1.bin')
|
|
|
|
|
|
def predict():
|
|
device = 'cuda'
|
|
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
|
|
model.load_state_dict(torch.load('model1.bin'))
|
|
model.eval()
|
|
|
|
ixs = torch.tensor(vocab.forward(['for'])).to(device)
|
|
|
|
out = model(ixs)
|
|
top = torch.topk(out[0], 10)
|
|
top_indices = top.indices.tolist()
|
|
top_probs = top.values.tolist()
|
|
top_words = vocab.lookup_tokens(top_indices)
|
|
print(list(zip(top_words, top_indices, top_probs)))
|
|
|
|
|
|
def similar():
|
|
device = 'cuda'
|
|
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
|
|
model.load_state_dict(torch.load('model1.bin'))
|
|
model.eval()
|
|
|
|
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
|
|
|
|
embeddings = model.model[0].weight
|
|
|
|
vec = embeddings[vocab['went']]
|
|
|
|
similarities = cos(vec, embeddings)
|
|
|
|
top = torch.topk(similarities, 10)
|
|
|
|
top_indices = top.indices.tolist()
|
|
top_probs = top.values.tolist()
|
|
top_words = vocab.lookup_tokens(top_indices)
|
|
print(list(zip(top_words, top_indices, top_probs)))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# train()
|
|
predict()
|