2021-05-23 19:01:11 +02:00
|
|
|
from mlflow.tracking import MlflowClient
|
2021-05-23 19:47:55 +02:00
|
|
|
import mlflow
|
|
|
|
import mlflow.keras
|
2021-05-23 19:01:11 +02:00
|
|
|
import json
|
|
|
|
|
|
|
|
#mlflow.set_tracking_uri("http://127.0.0.1:5000")
|
|
|
|
mlflow.set_tracking_uri("http://172.17.0.1:5000")
|
|
|
|
client = MlflowClient()
|
|
|
|
version = 0
|
2021-05-23 19:47:55 +02:00
|
|
|
model_name = "s434704"
|
|
|
|
for mv in client.search_model_versions(f"name='{model_name}'"):
|
2021-05-23 19:01:11 +02:00
|
|
|
if int(mv.version) > version:
|
|
|
|
version = int(mv.version)
|
|
|
|
|
|
|
|
model = mlflow.pytorch.load_model(
|
|
|
|
model_uri=f"models:/{model_name}/{version}"
|
|
|
|
)
|
|
|
|
|
2021-05-23 19:47:55 +02:00
|
|
|
with open('movies_on_streaming_platforms_model/input_example.json') as json_file:
|
2021-05-23 19:01:11 +02:00
|
|
|
data = json.load(json_file)
|
|
|
|
#print(np.array(data['inputs']))
|
2021-05-23 19:47:55 +02:00
|
|
|
print(model.predict(data['inputs']))
|