Added sacred.
Some checks failed
s426206-training/pipeline/head There was a failure building this commit

This commit is contained in:
Jan Nowak 2021-05-16 13:28:57 +02:00
parent 6a76b0713f
commit 06894754f8
3 changed files with 108 additions and 85 deletions

1
.gitignore vendored
View File

@ -4,3 +4,4 @@ venv
metrics.tsv
*.pt
plot.png
my_runs

View File

@ -12,6 +12,7 @@ RUN chmod -R 777 /.kaggle
COPY ./requirments.txt ./
RUN pip3 install -r requirments.txt
RUN pip3 install torch==1.8.1+cpu torchvision==0.9.1+cpu torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
RUN pip3 install sacred
# Stwórzmy w kontenerze (jeśli nie istnieje) katalog /app i przejdźmy do niego (wszystkie kolejne polecenia RUN, CMD, ENTRYPOINT, COPY i ADD będą w nim wykonywane)
WORKDIR /app

View File

@ -5,21 +5,12 @@ import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, TensorDataset, DataLoader
import argparse
from sacred import Experiment
from sacred.observers import MongoObserver, FileStorageObserver
parser = argparse.ArgumentParser(description='Program do uczenia modelu')
parser.add_argument('-l', '--lr', type=float, default=1e-3, help="Współczynik uczenia (lr)", required=False)
parser.add_argument('-e', '--epochs', type=int, default=100, help="Liczba epok", required=False)
args = parser.parse_args()
lr = args.lr
n_epochs = args.epochs
train_dataset = torch.load('train_dataset.pt')
#val_dataset = torch.load('val_dataset.pt')
train_loader = DataLoader(dataset=train_dataset)
#val_loader = DataLoader(dataset=val_dataset)
ex = Experiment("426206", interactive=False, save_git_info=False)
ex.observers.append(FileStorageObserver('my_runs'))
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017', db_name='sacred'))
class LayerLinearRegression(nn.Module):
def __init__(self):
super().__init__()
@ -30,80 +21,110 @@ class LayerLinearRegression(nn.Module):
# Now it only takes a call to the layer to make predictions
return self.linear(x)
model = LayerLinearRegression()
# Checks model's parameters
#print(model.state_dict())
# parser = argparse.ArgumentParser(description='Program do uczenia modelu')
# parser.add_argument('-l', '--lr', type=float, default=1e-3, help="Współczynik uczenia (lr)", required=False)
# parser.add_argument('-e', '--epochs', type=int, default=100, help="Liczba epok", required=False)
# args = parser.parse_args()
#python3 dlgssdpytorch.py with lr=0.01 n_epochs=10
loss_fn = nn.MSELoss(reduction='mean')
optimizer = optim.SGD(model.parameters(), lr=lr)
@ex.config
def my_config():
lr = 1e-3
n_epochs = 100
def make_train_step(model, loss_fn, optimizer):
# Builds function that performs a step in the train loop
def train_step(x, y):
# Sets model to TRAIN mode
model.train()
# Makes predictions
yhat = model(x)
# Computes loss
loss = loss_fn(y, yhat)
# Computes gradients
loss.backward()
# Updates parameters and zeroes gradients
optimizer.step()
optimizer.zero_grad()
# Returns the loss
return loss.item()
@ex.capture
def train(lr, n_epochs, _run):
train_dataset = torch.load('train_dataset.pt')
#val_dataset = torch.load('val_dataset.pt')
# Returns the function that will be called inside the train loop
return train_step
train_loader = DataLoader(dataset=train_dataset)
#val_loader = DataLoader(dataset=val_dataset)
# Creates the train_step function for our model, loss function and optimizer
train_step = make_train_step(model, loss_fn, optimizer)
training_losses = []
validation_losses = []
#print(model.state_dict())
# For each epoch...
for epoch in range(n_epochs):
losses = []
# Uses loader to fetch one mini-batch for training
for x_batch, y_batch in train_loader:
# NOW, sends the mini-batch data to the device
# so it matches location of the MODEL
# x_batch = x_batch.to(device)
# y_batch = y_batch.to(device)
# One stpe of training
loss = train_step(x_batch, y_batch)
losses.append(loss)
training_loss = np.mean(losses)
training_losses.append(training_loss)
model = LayerLinearRegression()
# Checks model's parameters
#print(model.state_dict())
# After finishing training steps for all mini-batches,
# it is time for evaluation!
# Ewaluacja jest już tutaj nie potrzebna bo odbywa sie w evaluation.py. Można jednak włączyć podgląd ewaluacji dla poszczególnych epok.
# # We tell PyTorch to NOT use autograd...
# # Do you remember why?
# with torch.no_grad():
# val_losses = []
# # Uses loader to fetch one mini-batch for validation
# for x_val, y_val in val_loader:
# # Again, sends data to same device as model
# # x_val = x_val.to(device)
# # y_val = y_val.to(device)
loss_fn = nn.MSELoss(reduction='mean')
optimizer = optim.SGD(model.parameters(), lr=lr)
# model.eval()
# # Makes predictions
# yhat = model(x_val)
# # Computes validation loss
# val_loss = loss_fn(y_val, yhat)
# val_losses.append(val_loss.item())
# validation_loss = np.mean(val_losses)
# validation_losses.append(validation_loss)
def make_train_step(model, loss_fn, optimizer):
# Builds function that performs a step in the train loop
def train_step(x, y):
# Sets model to TRAIN mode
model.train()
# Makes predictions
yhat = model(x)
# Computes loss
loss = loss_fn(y, yhat)
# Computes gradients
loss.backward()
# Updates parameters and zeroes gradients
optimizer.step()
optimizer.zero_grad()
# Returns the loss
return loss.item()
# print(f"[{epoch+1}] Training loss: {training_loss:.3f}\t Validation loss: {validation_loss:.3f}")
print(f"[{epoch+1}] Training loss: {training_loss:.3f}\t")
# Returns the function that will be called inside the train loop
return train_step
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': lr,
}, 'model.pt')
# Creates the train_step function for our model, loss function and optimizer
train_step = make_train_step(model, loss_fn, optimizer)
training_losses = []
validation_losses = []
#print(model.state_dict())
# For each epoch...
for epoch in range(n_epochs):
_run.log_scalar("Epoch", str(epoch))
losses = []
# Uses loader to fetch one mini-batch for training
for x_batch, y_batch in train_loader:
# NOW, sends the mini-batch data to the device
# so it matches location of the MODEL
# x_batch = x_batch.to(device)
# y_batch = y_batch.to(device)
# One stpe of training
loss = train_step(x_batch, y_batch)
losses.append(loss)
training_loss = np.mean(losses)
training_losses.append(training_loss)
_run.log_scalar("MSE", str(training_loss))
# After finishing training steps for all mini-batches,
# it is time for evaluation!
# Ewaluacja jest już tutaj nie potrzebna bo odbywa sie w evaluation.py. Można jednak włączyć podgląd ewaluacji dla poszczególnych epok.
# # We tell PyTorch to NOT use autograd...
# # Do you remember why?
# with torch.no_grad():
# val_losses = []
# # Uses loader to fetch one mini-batch for validation
# for x_val, y_val in val_loader:
# # Again, sends data to same device as model
# # x_val = x_val.to(device)
# # y_val = y_val.to(device)
# model.eval()
# # Makes predictions
# yhat = model(x_val)
# # Computes validation loss
# val_loss = loss_fn(y_val, yhat)
# val_losses.append(val_loss.item())
# validation_loss = np.mean(val_losses)
# validation_losses.append(validation_loss)
# print(f"[{epoch+1}] Training loss: {training_loss:.3f}\t Validation loss: {validation_loss:.3f}")
print(f"[{epoch+1}] Training loss: {training_loss:.3f}\t")
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': lr,
}, 'model.pt')
@ex.automain
def my_main(lr, n_epochs, _run):
train(lr, n_epochs, _run)
ex.run()
ex.add_artifact('model.pt')