Mlflow predict from s434704
This commit is contained in:
parent
44840aecf2
commit
39bec6d769
4
.gitignore
vendored
4
.gitignore
vendored
@ -8,4 +8,6 @@ my_runs
|
||||
mlruns
|
||||
my_model
|
||||
1/
|
||||
mydb.sqlite
|
||||
mydb.sqlite
|
||||
movies_on_streaming_platforms_model.zip
|
||||
movies_on_streaming_platforms_model
|
@ -15,6 +15,7 @@ RUN pip3 install torch==1.8.1+cpu torchvision==0.9.1+cpu torchaudio==0.8.1 -f ht
|
||||
RUN pip3 install sacred
|
||||
RUN pip3 install pymongo
|
||||
RUN pip3 install mlflow
|
||||
RUN pip3 install tensorflow==2.5.0rc1
|
||||
# Stwórzmy w kontenerze (jeśli nie istnieje) katalog /app i przejdźmy do niego (wszystkie kolejne polecenia RUN, CMD, ENTRYPOINT, COPY i ADD będą w nim wykonywane)
|
||||
WORKDIR /app
|
||||
|
||||
|
@ -1,17 +1,14 @@
|
||||
import mlflow
|
||||
import mlflow.pytorch
|
||||
import mlflow.keras
|
||||
import sys
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
input = sys.argv[1]
|
||||
|
||||
model = mlflow.pytorch.load_model("my_model")
|
||||
model = mlflow.keras.load_model("movies_on_streaming_platforms_model")
|
||||
|
||||
with open('my_model/'+input) as json_file:
|
||||
with open('movies_on_streaming_platforms_model/'+input) as json_file:
|
||||
data = json.load(json_file)
|
||||
#print(np.array(data['inputs']))
|
||||
print(model(torch.tensor(np.array(data['inputs'])).float()))
|
||||
|
||||
#print(data)
|
||||
print(model.predict(data['inputs']))
|
||||
|
@ -1,16 +1,14 @@
|
||||
import mlflow
|
||||
import mlflow.pytorch
|
||||
from mlflow.tracking import MlflowClient
|
||||
import numpy as np
|
||||
import torch
|
||||
import mlflow
|
||||
import mlflow.keras
|
||||
import json
|
||||
|
||||
#mlflow.set_tracking_uri("http://127.0.0.1:5000")
|
||||
mlflow.set_tracking_uri("http://172.17.0.1:5000")
|
||||
client = MlflowClient()
|
||||
version = 0
|
||||
model_name = "s426206"
|
||||
for mv in client.search_model_versions("name='s426206'"):
|
||||
model_name = "s434704"
|
||||
for mv in client.search_model_versions(f"name='{model_name}'"):
|
||||
if int(mv.version) > version:
|
||||
version = int(mv.version)
|
||||
|
||||
@ -18,7 +16,7 @@ model = mlflow.pytorch.load_model(
|
||||
model_uri=f"models:/{model_name}/{version}"
|
||||
)
|
||||
|
||||
with open('my_model/input_example.json') as json_file:
|
||||
with open('movies_on_streaming_platforms_model/input_example.json') as json_file:
|
||||
data = json.load(json_file)
|
||||
#print(np.array(data['inputs']))
|
||||
print(model(torch.tensor(np.array(data['inputs'])).float()))
|
||||
print(model.predict(data['inputs']))
|
Loading…
Reference in New Issue
Block a user