Predict registry own model.
This commit is contained in:
parent
8934d2a07e
commit
5f572f039b
3
.gitignore
vendored
3
.gitignore
vendored
@ -7,4 +7,5 @@ plot.png
|
||||
my_runs
|
||||
mlruns
|
||||
my_model
|
||||
1/
|
||||
1/
|
||||
mydb.sqlite
|
@ -1,9 +1,5 @@
|
||||
pipeline {
|
||||
agent any
|
||||
// triggers {
|
||||
// upstream(upstreamProjects: "s426206-train/master",
|
||||
// threshold: hudson.model.Result.SUCCESS)
|
||||
// }
|
||||
parameters {
|
||||
buildSelector(
|
||||
defaultSelector: lastSuccessful(),
|
||||
|
26
Jenkinsfile_predict_registry
Normal file
26
Jenkinsfile_predict_registry
Normal file
@ -0,0 +1,26 @@
|
||||
pipeline {
|
||||
agent any
|
||||
stages {
|
||||
stage('checkout') {
|
||||
steps {
|
||||
checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[url: 'https://git.wmi.amu.edu.pl/s426206/ium_426206.git']]])
|
||||
}
|
||||
}
|
||||
stage('Copy artifact') {
|
||||
steps {
|
||||
copyArtifacts filter: 'my_model/input_example.json', fingerprintArtifacts: false, projectName: 's426206-training/master', selector: buildParameter('BUILD_SELECTOR_PREDICT')
|
||||
}
|
||||
}
|
||||
stage('docker') {
|
||||
steps {
|
||||
script {
|
||||
def img = docker.build('rokoch/ium:01')
|
||||
img.inside {
|
||||
sh 'chmod +x mlflow_predict_registry.py'
|
||||
sh 'python3 ./mlflow_predict_registry.py'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
24
mlflow_predict_registry.py
Normal file
24
mlflow_predict_registry.py
Normal file
@ -0,0 +1,24 @@
|
||||
import mlflow
|
||||
import mlflow.pytorch
|
||||
from mlflow.tracking import MlflowClient
|
||||
import numpy as np
|
||||
import torch
|
||||
import json
|
||||
|
||||
#mlflow.set_tracking_uri("http://127.0.0.1:5000")
|
||||
mlflow.set_tracking_uri("http://172.17.0.1:5000")
|
||||
client = MlflowClient()
|
||||
version = 0
|
||||
model_name = "s426206"
|
||||
for mv in client.search_model_versions("name='s426206'"):
|
||||
if int(mv.version) > version:
|
||||
version = int(mv.version)
|
||||
|
||||
model = mlflow.pytorch.load_model(
|
||||
model_uri=f"models:/{model_name}/{version}"
|
||||
)
|
||||
|
||||
with open('my_model/input_example.json') as json_file:
|
||||
data = json.load(json_file)
|
||||
#print(np.array(data['inputs']))
|
||||
print(model(torch.tensor(np.array(data['inputs'])).float()))
|
Loading…
Reference in New Issue
Block a user