from mlflow.tracking import MlflowClient import mlflow import mlflow.keras import json #mlflow.set_tracking_uri("http://127.0.0.1:5000") mlflow.set_tracking_uri("http://172.17.0.1:5000") client = MlflowClient() version = 0 model_name = "s434704" for mv in client.search_model_versions(f"name='{model_name}'"): if int(mv.version) > version: version = int(mv.version) model = mlflow.pytorch.load_model( model_uri=f"models:/{model_name}/{version}" ) with open('movies_on_streaming_platforms_model/input_example.json') as json_file: data = json.load(json_file) #print(np.array(data['inputs'])) print(model.predict(data['inputs']))