import torch import pandas as pd import numpy as np import torch.nn as nn from torch.utils.data.dataset import random_split from torch.utils.data import TensorDataset, DataLoader import torch import torch.optim as optim df = pd.read_csv("mms_norm.csv", header=0, sep=',') x_tensor = torch.tensor(df['Sales sum'].values).float() y_tensor = torch.tensor(df['Sales count'].values).float() dataset = TensorDataset(x_tensor, y_tensor) lengths = [int(len(dataset)*0.8), int(len(dataset)*0.2)] train_dataset, val_dataset = random_split(dataset, lengths) train_loader = DataLoader(dataset=train_dataset) val_loader = DataLoader(dataset=val_dataset) class LayerLinearRegression(nn.Module): def __init__(self): super().__init__() # Instead of our custom parameters, we use a Linear layer with single input and single output self.linear = nn.Linear(1, 1) def forward(self, x): # Now it only takes a call to the layer to make predictions return self.linear(x) model = LayerLinearRegression() # Checks model's parameters #print(model.state_dict()) lr = 1e-3 n_epochs = 20 loss_fn = nn.MSELoss(reduction='mean') optimizer = optim.SGD(model.parameters(), lr=lr) def make_train_step(model, loss_fn, optimizer): # Builds function that performs a step in the train loop def train_step(x, y): # Sets model to TRAIN mode model.train() # Makes predictions yhat = model(x) # Computes loss loss = loss_fn(y, yhat) # Computes gradients loss.backward() # Updates parameters and zeroes gradients optimizer.step() optimizer.zero_grad() # Returns the loss return loss.item() # Returns the function that will be called inside the train loop return train_step # Creates the train_step function for our model, loss function and optimizer train_step = make_train_step(model, loss_fn, optimizer) training_losses = [] validation_losses = [] #print(model.state_dict()) # For each epoch... for epoch in range(n_epochs): losses = [] # Uses loader to fetch one mini-batch for training for x_batch, y_batch in train_loader: # NOW, sends the mini-batch data to the device # so it matches location of the MODEL # x_batch = x_batch.to(device) # y_batch = y_batch.to(device) # One stpe of training loss = train_step(x_batch, y_batch) losses.append(loss) training_loss = np.mean(losses) training_losses.append(training_loss) # After finishing training steps for all mini-batches, # it is time for evaluation! # Ewaluacja jest już tutaj nie potrzebna bo odbywa sie w evaluation.py. Można jednak włączyć podgląd ewaluacji dla poszczególnych epok. # # We tell PyTorch to NOT use autograd... # # Do you remember why? with torch.no_grad(): val_losses = [] # Uses loader to fetch one mini-batch for validation for x_val, y_val in val_loader: # Again, sends data to same device as model # x_val = x_val.to(device) # y_val = y_val.to(device) model.eval() # Makes predictions yhat = model(x_val) # Computes validation loss val_loss = loss_fn(y_val, yhat) val_losses.append(val_loss.item()) validation_loss = np.mean(val_losses) validation_losses.append(validation_loss) # print(f"[{epoch+1}] Training loss: {training_loss:.3f}\t Validation loss: {validation_loss:.3f}") print(f"{validation_loss:.4f}") # torch.save({ # 'model_state_dict': model.state_dict(), # 'optimizer_state_dict': optimizer.state_dict(), # 'loss': lr, # }, 'model.pt')