ium_426206/evaluation.py
2021-05-13 00:15:26 +02:00

42 lines
1.4 KiB
Python

import torch
import numpy as np
from datetime import datetime
import torch.nn as nn
import torch.optim as optim
#from torch.utils.data import Dataset, TensorDataset, DataLoader
class LayerLinearRegression(nn.Module):
def __init__(self):
super().__init__()
# Instead of our custom parameters, we use a Linear layer with single input and single output
self.linear = nn.Linear(1, 1)
def forward(self, x):
# Now it only takes a call to the layer to make predictions
return self.linear(x)
checkpoint = torch.load('model.pt')
model = LayerLinearRegression()
optimizer = optim.SGD(model.parameters(), lr=checkpoint['loss'])
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
model.eval()
now = datetime.now()
print("\n-----------{}-----------".format(now.strftime("%d/%m/%Y, %H:%M:%S")))
# Checks model's parameters
print("Model's state_dict:")
for param_tensor in model.state_dict():
print(param_tensor, "\t", model.state_dict()[param_tensor])
# Print optimizer's state_dict
print("Optimizer's state_dict:")
for var_name in optimizer.state_dict():
print(var_name, "\t", optimizer.state_dict()[var_name])
#print("Mean squared error for training: ", np.mean(losses))
#print("Mean squared error for validating: ", np.mean(val_losses))
print("----------------------\n")