Rozwiazanie zadania bayes2.

This commit is contained in:
Jan Nowak 2021-05-12 14:48:17 +02:00
parent 9cb2fb2612
commit 43d80423a4
3 changed files with 10966 additions and 0 deletions

5452
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

67
rozwiazanie.py Normal file
View File

@ -0,0 +1,67 @@
#import numpy as np
import gzip
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn import metrics
#df = pd.read_csv('sport-text-classification-ball-ISI-public/train/train.tsv.gz', compression='gzip', header=None, sep='\t', error_bad_lines=False)
train_X = []
train_y = []
with gzip.open('train/train.tsv.gz','r') as fin:
for line in fin:
sline = line.decode('UTF-8').replace("\n", "").split("\t")
train_y.append(sline[0])
train_X.append(''.join(sline[1:]))
test_X = []
with open('dev-0/in.tsv','r') as test_in_file:
for line in test_in_file:
test_X.append(line.rstrip('\n'))
test_y = []
with open('dev-0/expected.tsv','r') as test_expected_file:
for line in test_expected_file:
test_y.append(line.rstrip('\n'))
vectorizer = TfidfVectorizer(lowercase = True)
X_train_tf = vectorizer.fit_transform(train_X)
print("n_samples: %d, n_features: %d" % X_train_tf.shape)
X_test_tf = vectorizer.transform(test_X)
print("n_samples: %d, n_features: %d" % X_test_tf.shape)
naive_bayes_classifier = MultinomialNB()
naive_bayes_classifier.fit(X_train_tf, train_y)
y_pred = naive_bayes_classifier.predict(X_test_tf)
score1 = metrics.accuracy_score(test_y, y_pred)
print("accuracy: %0.3f" % score1)
print(metrics.classification_report(test_y, y_pred,
target_names=['1', '0']))
print("confusion matrix:")
print(metrics.confusion_matrix(test_y, y_pred))
print('------------------------------')
file = open('dev-0/out.tsv',"w")
for i in y_pred:
file.writelines("{}\n".format(i))
file.close()
val_X = []
with open('test-A/in.tsv','r') as test_in_file:
for line in test_in_file:
val_X.append(line.rstrip('\n'))
X_val_tf = vectorizer.transform(val_X)
print("n_samples: %d, n_features: %d" % X_val_tf.shape)
val_y_pred = naive_bayes_classifier.predict(X_val_tf)
file = open('test-A/out.tsv',"w")
for i in val_y_pred:
file.writelines("{}\n".format(i))
file.close()

5447
test-A/out.tsv Normal file

File diff suppressed because it is too large Load Diff