finally... after platform change solution works
This commit is contained in:
commit
2af8e67c62
13
README.md
Normal file
13
README.md
Normal file
@ -0,0 +1,13 @@
|
||||
Skeptic vs paranormal subreddits
|
||||
================================
|
||||
|
||||
Classify a reddit as either from Skeptic subreddit or one of the
|
||||
"paranormal" subreddits (Paranormal, UFOs, TheTruthIsHere, Ghosts,
|
||||
,Glitch-in-the-Matrix, conspiracytheories).
|
||||
|
||||
Output label is the probability of a paranormal subreddit.
|
||||
|
||||
Sources
|
||||
-------
|
||||
|
||||
Data taken from <https://archive.org/details/2015_reddit_comments_corpus>.
|
126
bayess.ipynb
Normal file
126
bayess.ipynb
Normal file
@ -0,0 +1,126 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "5fcb7312",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.pipeline import make_pipeline\n",
|
||||
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
||||
"from sklearn.naive_bayes import MultinomialNB\n",
|
||||
"import pandas as pd\n",
|
||||
"import csv\n",
|
||||
"import numpy as np\n",
|
||||
"from sklearn.preprocessing import LabelEncoder"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "88ac1be8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"steps = make_pipeline(TfidfVectorizer(),MultinomialNB())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "4aa43416",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#training\n",
|
||||
"all_train_data_in = pd.read_csv('train/in.tsv.xz', compression='xz', header=None, error_bad_lines=False, quoting=csv.QUOTE_NONE, sep='\\t', nrows=3000)\n",
|
||||
"train_data_ex = pd.read_csv('train/expected.tsv', header=None, error_bad_lines=False, quoting=csv.QUOTE_NONE, sep='\\t', nrows=3000)\n",
|
||||
"train_data_in = []\n",
|
||||
"for value in all_train_data_in.values:\n",
|
||||
" temp = \"\"\n",
|
||||
" for el in value:\n",
|
||||
" if(temp == \"\"):\n",
|
||||
" temp = str(el)\n",
|
||||
" else:\n",
|
||||
" temp += '\\t' + str(el)\n",
|
||||
" train_data_in.append(temp)\n",
|
||||
" \n",
|
||||
"nb=steps.fit(train_data_in, LabelEncoder().fit_transform(train_data_ex.values))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "15c47c24",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#dev0\n",
|
||||
"all_dev0_data = pd.read_csv('dev-0/in.tsv.xz', compression='xz', header=None, quoting=csv.QUOTE_NONE, sep='\\t')\n",
|
||||
"dev0_data = []\n",
|
||||
"for value in all_dev0_data.values:\n",
|
||||
" temp = \"\"\n",
|
||||
" for el in value:\n",
|
||||
" if(temp == \"\"):\n",
|
||||
" temp = str(el)\n",
|
||||
" else:\n",
|
||||
" temp += '\\t' + str(el)\n",
|
||||
" dev0_data.append(temp)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"dev0_y = nb.predict(dev0_data)\n",
|
||||
"\n",
|
||||
"#zapis wyników\n",
|
||||
"dev0_y.tofile('dev-0/out.tsv', sep='\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "822b1e29",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#test-A\n",
|
||||
"all_testA_data = pd.read_csv('test-A/in.tsv.xz', compression='xz', header=None, quoting=csv.QUOTE_NONE, sep='\\t')\n",
|
||||
"testA_data = []\n",
|
||||
"for value in all_testA_data.values:\n",
|
||||
" temp = \"\"\n",
|
||||
" for el in value:\n",
|
||||
" if(temp == \"\"):\n",
|
||||
" temp = str(el)\n",
|
||||
" else:\n",
|
||||
" temp += '\\t' + str(el)\n",
|
||||
" testA_data.append(temp)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"testA_y = nb.predict(testA_data)\n",
|
||||
"\n",
|
||||
"#zapis wyników\n",
|
||||
"testA_y.tofile('test-A/out.tsv', sep='\\n')"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
83
bayess.py
Normal file
83
bayess.py
Normal file
@ -0,0 +1,83 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[1]:
|
||||
|
||||
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
import pandas as pd
|
||||
import csv
|
||||
import numpy as np
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
|
||||
|
||||
# In[2]:
|
||||
|
||||
|
||||
steps = make_pipeline(TfidfVectorizer(),MultinomialNB())
|
||||
|
||||
|
||||
# In[14]:
|
||||
|
||||
|
||||
#training
|
||||
all_train_data_in = pd.read_csv('train/in.tsv.xz', compression='xz', header=None, error_bad_lines=False, quoting=csv.QUOTE_NONE, sep='\t', nrows=3000)
|
||||
train_data_ex = pd.read_csv('train/expected.tsv', header=None, error_bad_lines=False, quoting=csv.QUOTE_NONE, sep='\t', nrows=3000)
|
||||
train_data_in = []
|
||||
for value in all_train_data_in.values:
|
||||
temp = ""
|
||||
for el in value:
|
||||
if(temp == ""):
|
||||
temp = str(el)
|
||||
else:
|
||||
temp += '\t' + str(el)
|
||||
train_data_in.append(temp)
|
||||
|
||||
nb=steps.fit(train_data_in, LabelEncoder().fit_transform(train_data_ex.values))
|
||||
|
||||
|
||||
# In[17]:
|
||||
|
||||
|
||||
#dev0
|
||||
all_dev0_data = pd.read_csv('dev-0/in.tsv.xz', compression='xz', header=None, quoting=csv.QUOTE_NONE, sep='\t')
|
||||
dev0_data = []
|
||||
for value in all_dev0_data.values:
|
||||
temp = ""
|
||||
for el in value:
|
||||
if(temp == ""):
|
||||
temp = str(el)
|
||||
else:
|
||||
temp += '\t' + str(el)
|
||||
dev0_data.append(temp)
|
||||
|
||||
|
||||
dev0_y = nb.predict(dev0_data)
|
||||
|
||||
#zapis wyników
|
||||
dev0_y.tofile('dev-0/out.tsv', sep='\n')
|
||||
|
||||
|
||||
# In[16]:
|
||||
|
||||
|
||||
#test-A
|
||||
all_testA_data = pd.read_csv('test-A/in.tsv.xz', compression='xz', header=None, quoting=csv.QUOTE_NONE, sep='\t')
|
||||
testA_data = []
|
||||
for value in all_testA_data.values:
|
||||
temp = ""
|
||||
for el in value:
|
||||
if(temp == ""):
|
||||
temp = str(el)
|
||||
else:
|
||||
temp += '\t' + str(el)
|
||||
testA_data.append(temp)
|
||||
|
||||
|
||||
testA_y = nb.predict(testA_data)
|
||||
|
||||
#zapis wyników
|
||||
testA_y.tofile('test-A/out.tsv', sep='\n')
|
||||
|
1
config.txt
Normal file
1
config.txt
Normal file
@ -0,0 +1 @@
|
||||
--metric Likelihood --metric Accuracy --metric F1 --metric F0:N<Precision> --metric F9999999:N<Recall> --precision 4 --in-header in-header.tsv --out-header out-header.tsv
|
5272
dev-0/expected.tsv
Normal file
5272
dev-0/expected.tsv
Normal file
File diff suppressed because it is too large
Load Diff
BIN
dev-0/in.tsv.xz
Normal file
BIN
dev-0/in.tsv.xz
Normal file
Binary file not shown.
5272
dev-0/out.tsv
Normal file
5272
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
1
in-header.tsv
Normal file
1
in-header.tsv
Normal file
@ -0,0 +1 @@
|
||||
PostText Timestamp
|
|
1
out-header.tsv
Normal file
1
out-header.tsv
Normal file
@ -0,0 +1 @@
|
||||
Label
|
|
BIN
test-A/in.tsv.xz
Normal file
BIN
test-A/in.tsv.xz
Normal file
Binary file not shown.
5152
test-A/out.tsv
Normal file
5152
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
289579
train/expected.tsv
Normal file
289579
train/expected.tsv
Normal file
File diff suppressed because it is too large
Load Diff
BIN
train/in.tsv.xz
Normal file
BIN
train/in.tsv.xz
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user