forked from kubapok/retroc2
full train results
This commit is contained in:
parent
393630083f
commit
996589b699
20000
dev-0/out.tsv
Normal file
20000
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
11563
dev-1/out.tsv
Normal file
11563
dev-1/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
92
retroc.ipynb
92
retroc.ipynb
@ -1,38 +1,13 @@
|
|||||||
{
|
{
|
||||||
"metadata": {
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.8.3"
|
|
||||||
},
|
|
||||||
"orig_nbformat": 2,
|
|
||||||
"kernelspec": {
|
|
||||||
"name": "python38332bit715560a51b8a44948ee59d26a58cf272",
|
|
||||||
"display_name": "Python 3.8.3 32-bit"
|
|
||||||
},
|
|
||||||
"metadata": {
|
|
||||||
"interpreter": {
|
|
||||||
"hash": "d4bdc0d8028da516e3b937f3ab23da3f18f7264589053952c883afefa2219368"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 2,
|
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 1,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import pandas as pd\n",
|
"import pandas as pd\n",
|
||||||
|
"import csv\n",
|
||||||
"from sklearn.linear_model import LinearRegression\n",
|
"from sklearn.linear_model import LinearRegression\n",
|
||||||
"from stop_words import get_stop_words\n",
|
"from stop_words import get_stop_words\n",
|
||||||
"from sklearn.feature_extraction.text import TfidfVectorizer"
|
"from sklearn.feature_extraction.text import TfidfVectorizer"
|
||||||
@ -40,37 +15,48 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 2,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"LinearRegression()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"#trening\n",
|
"#trening\n",
|
||||||
"\n",
|
"\n",
|
||||||
"#dane treningowe\n",
|
"#dane treningowe\n",
|
||||||
"train_data = pd.read_csv('train/train.tsv.xz', compression='xz', sep='\\t')\n",
|
"train_data = pd.read_csv('train/train.tsv.xz', compression='xz', header=None, sep='\\t')\n",
|
||||||
"\n",
|
"\n",
|
||||||
"#regresja liniowa\n",
|
"#regresja liniowa\n",
|
||||||
"LR = LinearRegression()\n",
|
"LR = LinearRegression()\n",
|
||||||
"#vectorizer\n",
|
"#vectorizer\n",
|
||||||
"VEC = TfidfVectorizer(stop_words=get_stop_words('polish'))\n",
|
"VEC = TfidfVectorizer(stop_words=get_stop_words('polish'))\n",
|
||||||
"#wektoryzacja danych treningowych\n",
|
"#wektoryzacja danych treningowych\n",
|
||||||
"train_x = VEC.fit_transform(train_data[2])\n",
|
"train_x = VEC.fit_transform(train_data[4])\n",
|
||||||
"#średnia dat\n",
|
"#średnia dat\n",
|
||||||
"dm = mean([train_data[0],train_data[1]])\n",
|
"dm = (train_data[0] + train_data[1])/2\n",
|
||||||
"#trening\n",
|
"#trening\n",
|
||||||
"LR.fit(train_x, dm)"
|
"LR.fit(train_x, dm)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 15,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"#dev-0 predict\n",
|
"#dev-0 predict\n",
|
||||||
"\n",
|
"\n",
|
||||||
"#dane treningowe\n",
|
"#dane treningowe\n",
|
||||||
"dev0_data = pd.read_csv('dev-0/in.tsv', sep='\\t')\n",
|
"dev0_data = pd.read_csv('dev-0/in.tsv', header=None, error_bad_lines=False, quoting=csv.QUOTE_NONE, sep='\\t')\n",
|
||||||
"\n",
|
"\n",
|
||||||
"#wektoryzacja danych treningowych\n",
|
"#wektoryzacja danych treningowych\n",
|
||||||
"dev0_x = VEC.transform(dev0_data[0])\n",
|
"dev0_x = VEC.transform(dev0_data[0])\n",
|
||||||
@ -82,7 +68,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 16,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"tags": []
|
"tags": []
|
||||||
},
|
},
|
||||||
@ -91,7 +77,7 @@
|
|||||||
"#dev-1 predict\n",
|
"#dev-1 predict\n",
|
||||||
"\n",
|
"\n",
|
||||||
"#dane treningowe\n",
|
"#dane treningowe\n",
|
||||||
"dev1_data = pd.read_csv('dev-1/in.tsv', sep='\\t')\n",
|
"dev1_data = pd.read_csv('dev-1/in.tsv', header=None, error_bad_lines=False, quoting=csv.QUOTE_NONE, sep='\\t')\n",
|
||||||
"\n",
|
"\n",
|
||||||
"#wektoryzacja danych treningowych\n",
|
"#wektoryzacja danych treningowych\n",
|
||||||
"dev1_x = VEC.transform(dev1_data[0])\n",
|
"dev1_x = VEC.transform(dev1_data[0])\n",
|
||||||
@ -103,22 +89,48 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 17,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"#test-A predict\n",
|
"#test-A predict\n",
|
||||||
"\n",
|
"\n",
|
||||||
"#dane treningowe\n",
|
"#dane treningowe\n",
|
||||||
"testA_data = pd.read_csv('testA/in.tsv', sep='\\t')\n",
|
"testA_data = pd.read_csv('test-A/in.tsv', header=None, error_bad_lines=False, quoting=csv.QUOTE_NONE, sep='\\t')\n",
|
||||||
"\n",
|
"\n",
|
||||||
"#wektoryzacja danych treningowych\n",
|
"#wektoryzacja danych treningowych\n",
|
||||||
"testA_x = VEC.transform(testA_data[0])\n",
|
"testA_x = VEC.transform(testA_data[0])\n",
|
||||||
"#predykcja\n",
|
"#predykcja\n",
|
||||||
"testA_y = LR.predict(testA_x)\n",
|
"testA_y = LR.predict(testA_x)\n",
|
||||||
"#zapis wyników\n",
|
"#zapis wyników\n",
|
||||||
"testA_y.tofile('testA/out.tsv', sep='\\n')"
|
"testA_y.tofile('test-A/out.tsv', sep='\\n')"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
]
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.0"
|
||||||
|
},
|
||||||
|
"metadata": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "d4bdc0d8028da516e3b937f3ab23da3f18f7264589053952c883afefa2219368"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
}
|
}
|
14220
test-A/out.tsv
Normal file
14220
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user