2020-12-12 17:32:50 +01:00
library ( shiny )
library ( magrittr )
library ( ggplot2 )
library ( plotly )
library ( DT )
2020-12-19 19:25:04 +01:00
calculatorUI <- function ( id ) {
ns <- NS ( id )
2021-01-22 13:42:15 +01:00
uiOutput ( " calculatorPage" )
2020-12-28 11:16:38 +01:00
2020-12-19 19:25:04 +01:00
}
2020-12-12 17:32:50 +01:00
2020-12-19 19:25:04 +01:00
calculatorServer <- function ( input , output , session ) {
2021-01-07 14:19:17 +01:00
calculatorRV <- reactiveValues ( value = NULL )
calculatorTV <- reactiveValues ( value = NULL )
2020-12-22 00:15:06 +01:00
2021-01-22 13:42:15 +01:00
output $ calculatorPage <- renderUI ( {
if ( get_page ( ) == " calculator" ) {
fluidPage (
fluidRow (
column ( 3 ,
tags $ div ( " Panel sterowania" ) %>% tagAppendAttributes ( class = " panel-title" ) ,
wellPanel (
sliderInput ( " slider1" , strong ( " Wiek pacjenta:" ) , min = 14 , max = 100 , value = 40 ) ,
selectInput ( " select1" , strong ( " Obecność wodobrzusza:" ) , choices = list ( " Nie" = 0 , " Tak" = 1 ) , selected = 0 ) ,
selectInput ( " select2" , strong ( " Obecność przepływu krwi w projekcji brodawkowatej:" ) , choices = list ( " Nie" = 0 , " Tak" = 1 ) , selected = 0 ) ,
sliderInput ( " slider2" , strong ( " Największa średnica elementu stałego (w mm):" ) , min = 0 , max = 200 , value = 0 ) ,
selectInput ( " select3" , strong ( " Nieregularna wewnętrzna ściana torbieli:" ) , choices = list ( " Nie" = 0 , " Tak" = 1 ) , selected = 0 ) ,
selectInput ( " select4" , strong ( " Obecność cieni akustycznych:" ) , choices = list ( " Nie" = 0 , " Tak" = 1 ) , selected = 0 ) ,
actionButton ( " update" , " Oblicz" ) ,
downloadButton ( " report" , " Generuj raport" ) )
) %>% tagAppendAttributes ( id = ' column-panel' ) ,
column ( 9 ,
tags $ div ( " Kalkulator wskaźnika ryzyka nowotworu jajnika (IOTA LR2)" ) %>% tagAppendAttributes ( class = " panel-title" ) ,
wellPanel (
p ( " Aplikacja przeznaczona jest dla lekarzy ginekologów i wdraża wskaźnik złośliwości nowotworu jajnika w oparciu o algorytm IOTA LR2. Wizualizuje również wynik regresji logistycznej." ) ,
p ( " Szczegółowy opis algorytmu znajduje się w artykule: Timmerman D, Testa AC, Bourne T, [i in.]. Model regresji logistycznej do rozróżniania łagodnych i złośliwych guzów przydatków przed operacją: wieloośrodkowe badanie przeprowadzone przez International Ovarian Tumor Analysis Group. J Clin Oncol. 2005, 23, 8794-8801." ) ,
p ( " Ogólnie algorytm LR2 przewiduje, że nowotwór jest łagodny, gdy pacjent jest młody, lity składnik zmiany jest mały i występują cienie akustyczne. Możesz to sprawdzić empirycznie za pomocą różnych kombinacji wartości wejściowych." ) ,
p ( " Wypełnij formularz i kliknij" , strong ( " Oblicz" ) , " " ) ,
htmlOutput ( " selected_var" ) ,
htmlOutput ( " var" ) ,
br ( ) ,
plotlyOutput ( " wykres" ) ,
uiOutput ( " calculatorSave" )
)
) %>% tagAppendAttributes ( id = ' column-content' )
) %>% tagAppendAttributes ( id = ' row-content' ) ,
fluidRow (
column ( 12 ,
tags $ span ( " © Copyright Wszystkie prawa zastrzeżone." ) ) %>% tagAppendAttributes ( id = ' column-copyright' ) ,
) %>% tagAppendAttributes ( id = ' row-footer' )
)
}
} )
2020-12-22 00:15:06 +01:00
output $ report <- downloadHandler (
2021-01-17 17:06:06 +01:00
2020-12-22 00:15:06 +01:00
filename = " raport.pdf" ,
content = function ( file ) {
2021-01-17 17:06:06 +01:00
2020-12-22 00:15:06 +01:00
tempReport <- file.path ( tempdir ( ) , " report.Rmd" )
file.copy ( " report.Rmd" , tempReport , overwrite = TRUE )
2021-01-17 17:06:06 +01:00
2020-12-22 00:15:06 +01:00
p = 0
if ( as.numeric ( input $ slider2 ) >= 50 ) {
p = 50
}
z = -5.3718 +0.0354 * as.numeric ( input $ slider1 ) +1.6159 * as.numeric ( input $ select1 ) +1.1768 * as.numeric ( input $ select2 ) +0.0697 * p +0.9586 * as.numeric ( input $ select3 ) -2.9486 * as.numeric ( input $ select4 )
x = round ( 1 / ( 1 + exp ( - z ) ) , 3 )
2021-01-07 01:32:44 +01:00
params <- list ( n = input $ slider1 , k = input $ slider2 , l = input $ select1 , m = input $ select2 , p = input $ select3 , r = input $ select4 , z = x )
2020-12-22 00:15:06 +01:00
2021-01-17 17:06:06 +01:00
2020-12-22 00:15:06 +01:00
rmarkdown :: render ( tempReport , output_file = file ,
params = params ,
envir = new.env ( parent = globalenv ( ) )
)
}
)
2020-12-12 17:32:50 +01:00
output $ selected_var <- renderText ( {
input $ update
p = 0
if ( as.numeric ( isolate ( input $ slider2 ) ) >= 50 ) {
p = 50
}
z = -5.3718 +0.0354 * as.numeric ( isolate ( input $ slider1 ) ) +1.6159 * as.numeric ( isolate ( input $ select1 ) ) +1.1768 * as.numeric ( isolate ( input $ select2 ) ) +0.0697 * p +0.9586 * as.numeric ( isolate ( input $ select3 ) ) -2.9486 * as.numeric ( isolate ( input $ select4 ) )
x = round ( 1 / ( 1 + exp ( - z ) ) , 3 )
2021-01-07 14:19:17 +01:00
calculatorRV $ value <- x
2020-12-12 17:32:50 +01:00
if ( as.numeric ( input $ update ) > 0 ) {
paste ( " Surowa wartość predyktora (im niższa, tym lepiej): " , strong ( x ) )
}
2021-01-07 14:19:17 +01:00
2020-12-12 17:32:50 +01:00
} )
output $ var <- renderText ( {
input $ update
p = 0
if ( as.numeric ( isolate ( input $ slider2 ) ) >= 50 ) {
p = 50
}
z = -5.3718 +0.0354 * as.numeric ( isolate ( input $ slider1 ) ) +1.6159 * as.numeric ( isolate ( input $ select1 ) ) +1.1768 * as.numeric ( isolate ( input $ select2 ) ) +0.0697 * p +0.9586 * as.numeric ( isolate ( input $ select3 ) ) -2.9486 * as.numeric ( isolate ( input $ select4 ) )
x = round ( 1 / ( 1 + exp ( - z ) ) , 3 )
if ( as.numeric ( input $ update ) > 0 ) {
if ( x > 0.1 ) {
paste ( " Klasa guza: " , strong ( " złośliwy" ) )
2021-01-07 14:19:17 +01:00
calculatorTV $ value <- paste ( " Klasa guza: " , strong ( " złośliwy" ) )
2020-12-12 17:32:50 +01:00
} else {
paste ( " Klasa guza: " , strong ( " łagodny" ) )
2021-01-07 14:19:17 +01:00
calculatorTV $ value <- paste ( " Klasa guza: " , strong ( " łagodny" ) )
2020-12-12 17:32:50 +01:00
}
}
} )
output $ wykres <- renderPlotly ( {
input $ update
p = 0
if ( as.numeric ( isolate ( input $ slider2 ) ) >= 50 ) {
p = 50
}
z = -5.3718 +0.0354 * as.numeric ( isolate ( input $ slider1 ) ) +1.6159 * as.numeric ( isolate ( input $ select1 ) ) +1.1768 * as.numeric ( isolate ( input $ select2 ) ) +0.0697 * p +0.9586 * as.numeric ( isolate ( input $ select3 ) ) -2.9486 * as.numeric ( isolate ( input $ select4 ) )
x = seq ( by = 1 , -8 , 8 )
y = round ( 1 / ( 1 + exp ( - x ) ) , 3 )
d = data.frame ( x , y )
if ( as.numeric ( input $ update ) > 0 ) {
g = ggplot ( data = d , aes ( x = x , y = y ) ) +
geom_line ( ) +
geom_point ( aes ( x = z , y = round ( 1 / ( 1 + exp ( - z ) ) , 3 ) ) , color = " red" , size = 4 ) +
geom_hline ( aes ( yintercept = 0.1 ) , linetype = " dashed" ) +
geom_text ( aes ( x = 6 , y = 0.15 ) , label = " próg złośliwości: 0.1" ) +
labs ( x = " Realność" , y = " Prognoza" ) +
theme_light ( )
ggplotly ( g )
}
} )
2021-01-07 14:19:17 +01:00
output $ calculatorSave <- renderUI ( {
if ( as.numeric ( input $ update ) > 0 ) {
actionButton ( " calculatorSubmit" , " Zapisz" )
}
} )
observeEvent ( input $ calculatorSubmit , {
calculatorSave <- data.frame ( slider1 <- input $ slider1 ,
select1 <- input $ select1 ,
select2 <- input $ select2 ,
slider2 <- input $ slider2 ,
select3 <- input $ select3 ,
select4 <- input $ select4 )
2021-01-25 13:31:00 +01:00
print ( calculatorSave )
2021-01-07 14:19:17 +01:00
calculatorParameterInts = list ( list ( name = " parameter1" , value = calculatorSave $ slider1 ) ,
list ( name = " parameter2" , value = calculatorSave $ select1 ) ,
list ( name = " parameter3" , value = calculatorSave $ select2 ) ,
list ( name = " parameter4" , value = calculatorSave $ slider2 ) ,
list ( name = " parameter5" , value = calculatorSave $ select3 ) ,
list ( name = " parameter6" , value = calculatorSave $ select4 ) )
prediction = list (
name = " IOTA" ,
parameterInts = calculatorParameterInts ,
resultValue = calculatorRV $ value ,
resultText = calculatorTV $ value
)
2021-01-22 17:48:59 +01:00
r <- httr :: POST ( " https://syi-back.herokuapp.com/api/prediction/save" , add_headers ( Authorization = paste ( " Bearer" , input $ token , sep = " " ) ) , body = prediction , encode = ' json' )
2021-01-07 14:19:17 +01:00
# SPRAWDZENIE POBIERANIA JEDNEGO I WIELU POMIAROW
2021-01-17 17:06:06 +01:00
# r<-httr::GET("http://localhost:8080/api/prediction/get/7",add_headers(Authorization=paste("Bearer",input$token,sep=" ")),encode = 'json')
2021-01-07 14:19:17 +01:00
# r<-httr::GET("http://localhost:8080/api/prediction/usersPredictions/ind",add_headers(Authorization=paste("Bearer",input$token,sep=" ")),encode = 'json')
if ( r $ status_code == 200 ) {
TRUE
} else {
FALSE
}
2021-01-17 17:06:06 +01:00
# print(toJSON(content(r,as = "parsed")))
2021-01-07 14:19:17 +01:00
} )
2020-12-12 17:32:50 +01:00
}