TakeCareApp/app/calculator_view.R

181 lines
6.3 KiB
R
Raw Normal View History

library(shiny)
library(magrittr)
library(ggplot2)
library(plotly)
library(DT)
calculatorViewUI <- function(id){
ns <- NS(id)
uiOutput("view")
}
calculatorViewServer <- function(input, output, session) {
pl <- list(
emptyTable="Tabela jest pusta",
sSearch = "Szukaj",
sInfo="Wyniki od _START_ do _END_ z _TOTAL_ rekordow",
sZeroRecords="Brak rekordow",
sEmptyTable="Pusta tabela",
oPaginate= list(
sFirst="Pierwsza", sPrevious="Poprzednia",sLast="Ostatnia", sNext="Nastepna"
),
sLengthMenu = "Pokaz _MENU_ rekordow na stronie"
)
component <- reactive({
if (is.null(get_query_param()$id)) {
return(NULL)
}else{
return(as.numeric(get_query_param()$id))
}
})
component2 <- reactive({
if(length(get_query_param())==1 ){
queryParam = as.numeric(get_query_param())
2021-01-22 17:48:59 +01:00
r = httr::GET(paste("https://syi-back.herokuapp.com/api/prediction/get/",as.character(queryParam),sep = ""),add_headers(Authorization=paste("Bearer",input$token,sep=" ")),encode = 'json')
r
}
})
component3<-eventReactive(input$pageIOTA,{
if(length(get_query_param())==1 ){
queryParam = as.numeric(get_query_param())
2021-01-22 17:48:59 +01:00
r = httr::GET(paste("https://syi-back.herokuapp.com/api/prediction/get/",as.character(queryParam),sep = ""),add_headers(Authorization=paste("Bearer",input$token,sep=" ")),encode = 'json')
r
}else{
NULL
}
})
observe({
if(get_page()=="iota"){
shinyjs::runjs('Shiny.onInputChange("pageIOTA", "iota");')
}
})
output$view<-renderUI({
response <- component3()
if(is.null(response)){
}else{
r = response
if(r$status_code==200){
2021-01-19 17:56:28 +01:00
# print(content(r)$prediction$parameterInts)
p=0
if(as.numeric(content(r)$prediction$parameterInts[[4]]$value)>=50){
p=50
}
z=-5.3718+0.0354*as.numeric(content(r)$prediction$parameterInts[[1]]$value)+1.6159*as.numeric(content(r)$prediction$parameterInts[[2]]$value)+1.1768*as.numeric(content(r)$prediction$parameterInts[[3]]$value)+0.0697*p+0.9586*as.numeric(content(r)$prediction$parameterInts[[5]]$value)-2.9486*as.numeric(content(r)$prediction$parameterInts[[6]]$value)
x=seq(by=1,-8,8)
y=round(1/(1+exp(-x)),3)
d=data.frame(x,y)
g=ggplot(data=d,aes(x=x,y=y))+
geom_line()+
geom_point(aes(x=z,y=round(1/(1+exp(-z)),3)),color="red",size=4)+
geom_hline(aes(yintercept=0.1),linetype = "dashed")+
geom_text(aes(x=6,y=0.15),label="próg złośliwości: 0.1")+
labs(x="Realność",y="Prognoza")
fluidPage(
fluidRow(
column(12,
tags$div("Kalkulator wskaźnika ryzyka nowotworu jajnika (IOTA LR2)") %>% tagAppendAttributes(class="panel-title"),
wellPanel(
p("Szczegółowy opis algorytmu znajduje się w artykule: Timmerman D, Testa AC, Bourne T, [i in.]. Model regresji logistycznej do rozróżniania łagodnych i złośliwych guzów przydatków przed operacją: wieloośrodkowe badanie przeprowadzone przez International Ovarian Tumor Analysis Group. J Clin Oncol. 2005, 23, 8794-8801."),
p("Ogólnie algorytm LR2 przewiduje, że nowotwór jest łagodny, gdy pacjent jest młody, lity składnik zmiany jest mały i występują cienie akustyczne. Możesz to sprawdzić empirycznie za pomocą różnych kombinacji wartości wejściowych."),
HTML(paste("Surowa wartość predyktora (im niższa, tym lepiej): ", strong(content(r)$prediction$resultValue))),
br(),
HTML(content(r)$prediction$resultText),
ggplotly(g),
disabled(sliderInput("vslider1", strong("Wiek pacjenta:"),min = 14, max = 100, value = content(r)$prediction$parameterInts[[1]]$value)),
disabled(selectInput("vselect1",strong("Obecność wodobrzusza:"),choices = list("Nie"=0,"Tak"=1),selected=content(r)$prediction$parameterInts[[2]]$value)),
disabled(selectInput("vselect2",strong("Obecność przepływu krwi w projekcji brodawkowatej:"),choices = list("Nie"=0,"Tak"=1),selected=content(r)$prediction$parameterInts[[3]]$value)),
disabled(sliderInput("vslider2", strong("Największa średnica elementu stałego (w mm):"),min = 0, max = 200, value =content(r)$prediction$parameterInts[[4]]$value)),
disabled(selectInput("vselect3",strong("Nieregularna wewnętrzna ściana torbieli:"),choices = list("Nie"=0,"Tak"=1),selected=content(r)$prediction$parameterInts[[5]]$value)),
disabled(selectInput("vselect4",strong("Obecność cieni akustycznych:"),choices = list("Nie"=0,"Tak"=1),selected=content(r)$prediction$parameterInts[[6]]$value)),
2021-01-19 17:56:28 +01:00
downloadButton("reportCalView", "Generuj raport")
))%>% tagAppendAttributes(id = 'column-content')
) %>% tagAppendAttributes(id = 'row-content'),
fluidRow(
column(12,
tags$span("© Copyright Wszystkie prawa zastrzeżone."))%>% tagAppendAttributes(id = 'column-copyright'),
)%>% tagAppendAttributes(id = 'row-footer')
)
}else{
shinyjs::runjs('window.location.replace(\'/#!/home\');')
}
}
}
)
2021-01-19 17:56:28 +01:00
output$reportCalView <- downloadHandler(
filename = "raport.pdf",
content = function(file) {
tempReport <- file.path(tempdir(), "report.Rmd")
file.copy("report.Rmd", tempReport, overwrite = TRUE)
p=0
if(as.numeric(input$slider2)>=50){
p=50
}
z=-5.3718+0.0354*as.numeric(input$vslider1)+1.6159*as.numeric(input$vselect1)+1.1768*as.numeric(input$vselect2)+0.0697*p+0.9586*as.numeric(input$vselect3)-2.9486*as.numeric(input$vselect4)
x=round(1/(1+exp(-z)),3)
params <- list(n = input$vslider1,k=input$vslider2,l=input$vselect1,m=input$vselect2,p=input$vselect3,r=input$vselect4,z=x)
rmarkdown::render(tempReport, output_file = file,
params = params,
envir = new.env(parent = globalenv())
)
}
)
}