import numpy as np from sklearn.naive_bayes import MultinomialNB from sklearn.feature_extraction.text import TfidfVectorizer from sklearn import preprocessing from sklearn.pipeline import make_pipeline import csv prep = preprocessing.LabelEncoder() with open("train/train.tsv") as file_train: csv_input = csv.reader(file_train, delimiter='\t') X = [] Y = [] for line in csv_input: Y.append(line[0]) X.append(line[1]) Y = prep.fit_transform(Y) with open("dev-0/in.tsv") as file_in: work_file_lines = file_in.readlines() MNB = make_pipeline(TfidfVectorizer(use_idf = True), MultinomialNB()) model = MNB.fit(X,Y) y_predict = model.predict(work_file_lines) y_predict = np.array(y_predict) np.set_printoptions(threshold=np.inf) labels = np.array2string(y_predict.flatten(), separator='\n', suppress_small=True) file_out = open("dev-0/out.tsv", 'w') file_out.write(labels[1:-1]) with open("dev-0/out.tsv", 'r') as fix_space: lines = fix_space.readlines() lines = [line.replace(' ', '') for line in lines] with open("dev-0/out.tsv", 'w') as fix_space: fix_space.writelines(lines)