forked from kalmar/DALGLI0
changed error handling
This commit is contained in:
parent
7522756ff9
commit
8175042b4a
Binary file not shown.
Binary file not shown.
3
02-Wielomiany/src/META-INF/MANIFEST.MF
Normal file
3
02-Wielomiany/src/META-INF/MANIFEST.MF
Normal file
@ -0,0 +1,3 @@
|
||||
Manifest-Version: 1.0
|
||||
Main-Class: Main
|
||||
|
@ -4,8 +4,7 @@ import java.util.List;
|
||||
|
||||
public class Main {
|
||||
|
||||
public static void main(String[] args) throws DivisionErrorException, MultiplierNotFoundException {
|
||||
//ex input in run console : 2 "1 1 1 0 1" "0 1 1"
|
||||
public static void main(String[] args){
|
||||
int n = Integer.parseInt(args[0]);
|
||||
List<Integer> firstPolynomial = new ArrayList<>();
|
||||
args[1] = args[1].substring(1, args[1].length()-1);
|
||||
@ -14,6 +13,11 @@ public class Main {
|
||||
List<Integer> secondPolynomial = new ArrayList<>();
|
||||
Arrays.asList(args[2].split(",\\s*" )).forEach(factor -> secondPolynomial.add(Integer.valueOf(factor)));
|
||||
PolynomialTask polynomialTask = new PolynomialTask(n, firstPolynomial, secondPolynomial);
|
||||
polynomialTask.printAllValuesToStandardOutput();
|
||||
System.out.print("[");
|
||||
System.out.print(polynomialTask.printMultipliedPoly()
|
||||
+ ", " + polynomialTask.printSubtractedPoly()
|
||||
+ ", " + polynomialTask.printGcd());
|
||||
System.out.print("]");
|
||||
|
||||
}
|
||||
}
|
||||
|
@ -1,134 +1,150 @@
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
import java.util.stream.Collectors;
|
||||
|
||||
public class PolynomialTask {
|
||||
private int n;
|
||||
|
||||
private List<Integer> firstPolynomial;
|
||||
private List<Integer> secondPolynomial;
|
||||
private int[] firstPolynomialAsArray;
|
||||
private int[] secondPolynomialAsArray;
|
||||
|
||||
public PolynomialTask(int n, List<Integer> firstPoly, List<Integer> secondPoly) {
|
||||
this.n = n;
|
||||
this.firstPolynomial = firstPoly;
|
||||
this.secondPolynomial = secondPoly;
|
||||
this.firstPolynomialAsArray = parseListToArray(firstPoly);
|
||||
this.secondPolynomialAsArray = parseListToArray(secondPoly);
|
||||
}
|
||||
|
||||
public Integer[] multiplyPolynomials(List<Integer> firstPolynomial, List<Integer> secondPolynomial) {
|
||||
int[] multiplied = new int[firstPolynomial.size() + secondPolynomial.size() - 1];
|
||||
int sizeOfFirstPoly = firstPolynomial.size();
|
||||
int sizeOfSecondPoly = secondPolynomial.size();
|
||||
private int[] parseListToArray(List<Integer> polynomial) {
|
||||
int[] result = new int[polynomial.size()];
|
||||
for (int i = 0; i < polynomial.size(); i++) {
|
||||
result[i] = polynomial.get(i);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
private int[] multiplyPolynomials(int[] firstPolynomial, int[] secondPolynomial) {
|
||||
int[] multiplied = new int[firstPolynomial.length + secondPolynomial.length - 1];
|
||||
int sizeOfFirstPoly = firstPolynomial.length;
|
||||
int sizeOfSecondPoly = secondPolynomial.length;
|
||||
for (int i = 0; i < sizeOfFirstPoly; i++) {
|
||||
for (int j = 0; j < sizeOfSecondPoly; j++)
|
||||
multiplied[i + j] = (multiplied[i + j] + (firstPolynomial.get(i) * secondPolynomial.get(j))) % n;
|
||||
multiplied[i + j] = (multiplied[i + j] + (firstPolynomial[i] * secondPolynomial[j])) % n;
|
||||
}
|
||||
return Arrays.stream(multiplied).boxed().toArray(Integer[]::new);
|
||||
return multiplied;
|
||||
}
|
||||
|
||||
public int[] moduloDividePolynomialsReturnQuotient(List<Integer> firstPoly, List<Integer> secondPoly) throws MultiplierNotFoundException, DivisionErrorException {
|
||||
int[] quotient = new int[firstPoly.size() + secondPoly.size()];
|
||||
int firstPolyDegree = firstPoly.size() - 1;
|
||||
int secondPolyDegree = secondPoly.size() - 1;
|
||||
List<Integer> polynomialAfterSubtract = firstPoly;
|
||||
|
||||
|
||||
while (firstPolyDegree >= secondPolyDegree) {
|
||||
polynomialAfterSubtract = calcQuotient(polynomialAfterSubtract, secondPoly, quotient);
|
||||
firstPolyDegree = polynomialAfterSubtract.size() - 1;
|
||||
private int[] polyDiv(int[] polyOne, int[] polyTwo) {
|
||||
if (polyOne.length < polyTwo.length) {
|
||||
return null;
|
||||
}
|
||||
|
||||
int[] remainder = new int[polynomialAfterSubtract.size()];
|
||||
for (int i = 0; i < polynomialAfterSubtract.size(); i++) {
|
||||
remainder[i] = polynomialAfterSubtract.get(i);
|
||||
int firstPolyDeg = polyOne.length - 1;
|
||||
int secondPolyDeg = polyTwo.length - 1;
|
||||
int[] tempArr = new int[polyOne.length];
|
||||
int[] result;
|
||||
fillTemporaryArray(polyTwo, tempArr);
|
||||
int tempMultiplier;
|
||||
int shift = 0;
|
||||
while (firstPolyDeg >= secondPolyDeg) {
|
||||
parseNegativeElement(polyOne, firstPolyDeg);
|
||||
tempMultiplier = findMultiplier(polyOne[firstPolyDeg], polyTwo[secondPolyDeg]);
|
||||
tempArr = shiftValuesInArray(tempArr, shift);
|
||||
tempArr = multiplyPolyByNumber(tempArr, tempMultiplier);
|
||||
tempArr = moduloArray(tempArr);
|
||||
polyOne = subtractTwoPolynomials(polyOne, tempArr);
|
||||
firstPolyDeg--;
|
||||
shift++;
|
||||
}
|
||||
return remainder;
|
||||
result = Arrays.copyOf(polyOne, shift - 1);
|
||||
return result;
|
||||
}
|
||||
|
||||
private List<Integer> calcQuotient(List<Integer> firstPoly, List<Integer> secondPoly, int[] quotient) throws MultiplierNotFoundException, DivisionErrorException {
|
||||
int firstPolyDegree = firstPoly.size() - 1;
|
||||
int secondPolyDegree = secondPoly.size() - 1;
|
||||
if (firstPolyDegree < secondPolyDegree) {
|
||||
throw new DivisionErrorException();
|
||||
private void fillTemporaryArray(int[] polyTwo, int[] tempArr) {
|
||||
for (int i = 0; i < polyTwo.length; i++) {
|
||||
tempArr[tempArr.length - 1 - i] = polyTwo[polyTwo.length - 1 - i];
|
||||
}
|
||||
int quotientCoefficient;
|
||||
if ((((float) firstPoly.get(firstPolyDegree) / (float) secondPoly.get(secondPolyDegree))) == Math.round(firstPoly.get(firstPolyDegree) / secondPoly.get(secondPolyDegree))) {
|
||||
quotientCoefficient = firstPoly.get(firstPolyDegree) / secondPoly.get(secondPolyDegree);
|
||||
} else {
|
||||
quotientCoefficient = invElem(firstPoly.get(firstPolyDegree), secondPoly.get(secondPolyDegree));
|
||||
}
|
||||
quotient[firstPolyDegree - secondPolyDegree] += quotientCoefficient;
|
||||
List<Integer> newPoly = generatePolyFromIndexAndValue(firstPolyDegree - secondPolyDegree, quotientCoefficient);
|
||||
Integer[] multipliedPolynomials = multiplyPolynomials(newPoly, secondPoly);
|
||||
List<Integer> polynomialAfterFirstDivide = new ArrayList<>(Arrays.asList(multipliedPolynomials));
|
||||
|
||||
return removeUnnecessaryZeros(subtractTwoPolynomials(firstPoly, polynomialAfterFirstDivide));
|
||||
}
|
||||
|
||||
private List<Integer> removeUnnecessaryZeros(List<Integer> polynomialAfterSubtract) {
|
||||
int amountOfZeros = 0;
|
||||
for (int i = polynomialAfterSubtract.size() - 1; i >= 0; i--) {
|
||||
if (polynomialAfterSubtract.get(i) == 0) {
|
||||
amountOfZeros++;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
private int[] subtractTwoPolynomials(int[] polyOne, int[] polyTwo) {
|
||||
int[] result = new int[polyOne.length];
|
||||
for (int i = 0; i < polyOne.length; i++) {
|
||||
result[i] = polyOne[i] - polyTwo[i];
|
||||
}
|
||||
|
||||
polynomialAfterSubtract = polynomialAfterSubtract.subList(0, polynomialAfterSubtract.size() - amountOfZeros);
|
||||
return polynomialAfterSubtract;
|
||||
return result;
|
||||
}
|
||||
|
||||
private List<Integer> subtractTwoPolynomials(List<Integer> firstPoly, List<Integer> secondPoly) {
|
||||
List<Integer> subtractedPolynomial = new ArrayList<>(Collections.nCopies(firstPoly.size() + secondPoly.size(), 0));
|
||||
for (int index = firstPoly.size(); index >= 0; index--) {
|
||||
if (index < secondPoly.size()) {
|
||||
subtractedPolynomial.set(index, firstPoly.get(index) - secondPoly.get(index));
|
||||
parseNegativeElement(subtractedPolynomial, index);
|
||||
}
|
||||
private int[] moduloArray(int[] array) {
|
||||
for (int i = 0; i < array.length; i++) {
|
||||
array[i] = array[i] % n;
|
||||
}
|
||||
return subtractedPolynomial;
|
||||
return array;
|
||||
}
|
||||
|
||||
private void parseNegativeElement(List<Integer> subtractedPolynomial, int index) {
|
||||
while (subtractedPolynomial.get(index) < 0)
|
||||
subtractedPolynomial.set(index, (subtractedPolynomial.get(index) * subtractedPolynomial.get(index)) % n);
|
||||
}
|
||||
|
||||
private List<Integer> generatePolyFromIndexAndValue(int size, int quotientCoefficient) {
|
||||
List<Integer> poly = new ArrayList<>(Collections.nCopies(size + 1, 0));
|
||||
poly.set(size, quotientCoefficient);
|
||||
private int[] multiplyPolyByNumber(int[] poly, int multiplier) {
|
||||
for (int i = 0; i < poly.length; i++) {
|
||||
poly[i] = poly[i] * multiplier;
|
||||
}
|
||||
return poly;
|
||||
}
|
||||
|
||||
private int invElem(int a, int b) throws MultiplierNotFoundException {
|
||||
private int[] shiftValuesInArray(int[] array, int amount) {
|
||||
if (amount == 0) {
|
||||
return array;
|
||||
} else {
|
||||
int[] res = new int[array.length];
|
||||
System.arraycopy(array, amount, res, 0, array.length - amount);
|
||||
for (int j = array.length - amount + 1; j < res.length; j++) {
|
||||
res[j] = 0;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
private void parseNegativeElement(int[] polyOne, int firstPolyDeg) {
|
||||
while (polyOne[firstPolyDeg] < 0) {
|
||||
polyOne[firstPolyDeg] = n + polyOne[firstPolyDeg];
|
||||
}
|
||||
}
|
||||
|
||||
private int findMultiplier(int a, int b) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (a == (b * i) % n) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
|
||||
throw new MultiplierNotFoundException();
|
||||
return -1;
|
||||
}
|
||||
|
||||
public void printAllValuesToStandardOutput() throws DivisionErrorException, MultiplierNotFoundException {
|
||||
List<List<Integer>> values = new ArrayList<>();
|
||||
values.add(Arrays.asList(multiplyPolynomials(firstPolynomial, secondPolynomial)));
|
||||
values.add(Arrays.stream(moduloDividePolynomialsReturnQuotient(firstPolynomial, secondPolynomial)).boxed().collect(Collectors.toList()));
|
||||
try {
|
||||
values.add(gcd(firstPolynomial, secondPolynomial));
|
||||
} catch (MultiplierNotFoundException e) {
|
||||
public String printMultipliedPoly() {
|
||||
return Arrays.toString(multiplyPolynomials(firstPolynomialAsArray, secondPolynomialAsArray));
|
||||
}
|
||||
|
||||
public String printSubtractedPoly() {
|
||||
int[] result = polyDiv(firstPolynomialAsArray, secondPolynomialAsArray);
|
||||
if (result == null) {
|
||||
return "Division Error";
|
||||
} else if (result.length == 0) {
|
||||
return "[0]";
|
||||
} else {
|
||||
return Arrays.toString(polyDiv(firstPolynomialAsArray, secondPolynomialAsArray));
|
||||
}
|
||||
System.out.println(values);
|
||||
}
|
||||
|
||||
private List<Integer> gcd(List<Integer> polyOne, List<Integer> polyTwo) throws MultiplierNotFoundException, DivisionErrorException {
|
||||
if (polyTwo.isEmpty()) return polyOne;
|
||||
List<Integer> poly = Arrays.stream(moduloDividePolynomialsReturnQuotient(polyOne, polyTwo)).boxed().collect(Collectors.toList());
|
||||
return gcd(polyTwo, poly);
|
||||
public String printGcd() {
|
||||
int[] gcd = gcd(firstPolynomialAsArray, secondPolynomialAsArray);
|
||||
if (gcd == null) {
|
||||
return "Division Error";
|
||||
} else
|
||||
return Arrays.toString(gcd);
|
||||
}
|
||||
|
||||
private int[] gcd(int[] firstPoly, int[] secondPoly) {
|
||||
if (secondPoly.length == 0) {
|
||||
return firstPoly;
|
||||
}
|
||||
if (firstPoly.length >= secondPoly.length) {
|
||||
return gcd(secondPoly, polyDiv(firstPoly, secondPoly));
|
||||
} else {
|
||||
return gcd(secondPoly, polyDiv(secondPoly, firstPoly));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user