paranormal-or-skeptic-ISI-p.../app.py
2021-05-08 11:07:34 +02:00

29 lines
893 B
Python

from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
def makePrediction(filePath):
with open(filePath + 'in.tsv') as input:
predictData = input.readlines()
pred = model.predict(predictData)
with open(filePath + "out.tsv", "w") as result:
for prediction in pred:
result.write(str(prediction) + '\n')
expectedTraining = open('./train/expected.tsv').readlines()
inTraining = open('./train/in.tsv').readlines()
afterTransform = LabelEncoder().fit_transform(expectedTraining)
pipeline = Pipeline(
steps=[('tfidf', TfidfVectorizer()), ('naive-bayes', MultinomialNB())])
model = pipeline.fit(inTraining, afterTransform)
makePrediction('./dev-0/')
makePrediction('./test-A/')