Compare commits
No commits in common. "master" and "master" have entirely different histories.
5452
dev-0/out.tsv
5452
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
121
main.py
121
main.py
@ -1,121 +0,0 @@
|
|||||||
from gensim.models import KeyedVectors
|
|
||||||
import nltk
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
import torch
|
|
||||||
import csv
|
|
||||||
|
|
||||||
# nltk.download('punkt')
|
|
||||||
|
|
||||||
# http://dsmodels.nlp.ipipan.waw.pl/dsmodels/wiki-forms-all-100-skipg-ns.txt.gz
|
|
||||||
# word2vec = KeyedVectors.load_word2vec_format(
|
|
||||||
# 'wiki-forms-all-100-skipg-ns.txt.gz', binary=False)
|
|
||||||
# word2vec.save("word2vec.bin")
|
|
||||||
|
|
||||||
def ReadFile(path):
|
|
||||||
variable = pd.read_table(path, error_bad_lines=False,
|
|
||||||
sep='\t', quoting=csv.QUOTE_NONE, header=None)
|
|
||||||
return variable
|
|
||||||
|
|
||||||
|
|
||||||
train = ReadFile('train/train.tsv')
|
|
||||||
x_dev = ReadFile('dev-0/in.tsv')
|
|
||||||
y_dev = ReadFile('dev-0/expected.tsv')
|
|
||||||
x_test = ReadFile('test-A/in.tsv')
|
|
||||||
|
|
||||||
x_train = train[1].values
|
|
||||||
y_train = train[0].values
|
|
||||||
x_dev = x_dev[0].values
|
|
||||||
x_test = x_test[0].values
|
|
||||||
batch_size = 12
|
|
||||||
|
|
||||||
word2vec = KeyedVectors.load("word2vec.bin")
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def Tokenize(data):
|
|
||||||
new_data = [nltk.word_tokenize(x) for x in data]
|
|
||||||
|
|
||||||
for doc in new_data:
|
|
||||||
i = 0
|
|
||||||
while i < len(doc):
|
|
||||||
if doc[i].isalpha():
|
|
||||||
doc[i] = doc[i].lower()
|
|
||||||
else:
|
|
||||||
del doc[i]
|
|
||||||
i += 1
|
|
||||||
return new_data
|
|
||||||
|
|
||||||
|
|
||||||
def Generate(path):
|
|
||||||
predict = model(torch.tensor(x_dev_vec.astype(np.float32)))
|
|
||||||
predict = predict.cpu().detach().numpy()
|
|
||||||
predict = (predict > 0.5)
|
|
||||||
predict = np.asarray(predict, dtype=np.int32)
|
|
||||||
predict.tofile(path, sep='\n')
|
|
||||||
|
|
||||||
|
|
||||||
x_train_tokenized = Tokenize(x_train)
|
|
||||||
x_dev_tokenized = Tokenize(x_dev)
|
|
||||||
x_test_tokenized = Tokenize(x_test)
|
|
||||||
|
|
||||||
x_train = [np.mean([word2vec[word] for word in content if word in word2vec] or [
|
|
||||||
np.zeros(100)], axis=0) for content in x_train]
|
|
||||||
x_train_tensor = torch.tensor(
|
|
||||||
np.array(x_train, dtype=np.float32).astype(np.float32))
|
|
||||||
x_train_vec = np.array(x_train, dtype=np.float32)
|
|
||||||
|
|
||||||
x_dev = [np.mean([word2vec[word] for word in content if word in word2vec] or [
|
|
||||||
np.zeros(100)], axis=0) for content in x_dev]
|
|
||||||
x_dev_vec = np.array(x_dev, dtype=np.float32)
|
|
||||||
|
|
||||||
x_test = [np.mean([word2vec[word] for word in content if word in word2vec] or [
|
|
||||||
np.zeros(100)], axis=0) for content in x_test]
|
|
||||||
x_test_vec = np.array(x_test, dtype=np.float32)
|
|
||||||
|
|
||||||
|
|
||||||
class Model(torch.nn.Module):
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
super(Model, self).__init__()
|
|
||||||
self.var1 = torch.nn.Linear(100, 200)
|
|
||||||
self.var2 = torch.nn.Linear(200, 1)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.var1(x)
|
|
||||||
x = torch.relu(x)
|
|
||||||
x = self.var2(x)
|
|
||||||
x = torch.sigmoid(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
model = Model()
|
|
||||||
criterion = torch.nn.BCELoss()
|
|
||||||
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
|
|
||||||
|
|
||||||
for element in range(7):
|
|
||||||
loss_score = 0
|
|
||||||
acc_score = 0
|
|
||||||
items_total = 0
|
|
||||||
model.train()
|
|
||||||
|
|
||||||
for i in range(0, y_train.shape[0], batch_size):
|
|
||||||
X = x_train_vec[i:i + batch_size]
|
|
||||||
X = torch.tensor(X.astype(np.float32))
|
|
||||||
Y = y_train[i:i + batch_size]
|
|
||||||
Y = torch.tensor(Y.astype(np.float32)).reshape(-1, 1)
|
|
||||||
Y_predictions = model(X)
|
|
||||||
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
|
|
||||||
items_total += Y.shape[0]
|
|
||||||
|
|
||||||
optimizer.zero_grad()
|
|
||||||
loss = criterion(Y_predictions, Y)
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
loss_score += loss.item() * Y.shape[0]
|
|
||||||
print(element)
|
|
||||||
|
|
||||||
Generate('dev-0/out.tsv')
|
|
||||||
Generate('test-A/out.tsv')
|
|
5452
test-A/out.tsv
5452
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
98132
train/train.tsv
98132
train/train.tsv
File diff suppressed because it is too large
Load Diff
BIN
word2vec.bin
BIN
word2vec.bin
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue
Block a user