forked from kubapok/retroc2
44 lines
1.3 KiB
Python
44 lines
1.3 KiB
Python
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.linear_model import LinearRegression
|
|
from stop_words import get_stop_words
|
|
import pandas as pd
|
|
import numpy as np
|
|
import csv
|
|
|
|
|
|
lm_model = LinearRegression()
|
|
tfidvectorizer = TfidfVectorizer(stop_words=get_stop_words('polish'))
|
|
|
|
|
|
train_nm = ['start_date', 'end_date', 'title', 'sort_title', 'data']
|
|
train_nm_test = ['data']
|
|
|
|
dataset = []
|
|
processed = []
|
|
new_text = ""
|
|
|
|
train_file = pd.read_csv('train/train.tsv', sep="\t", names=train_nm)
|
|
print('DONE20!')
|
|
date = (train_file['start_date'] + train_file['end_date']) / 2
|
|
print('DONE22!')
|
|
vectorizer= tfidvectorizer.fit_transform(train_file['data'])
|
|
print('DONE24!')
|
|
lm_model.fit(vectorizer, date)
|
|
print('DONE26!')
|
|
|
|
dev_0 = pd.read_csv("dev-0/in.tsv", error_bad_lines = False, header = None, sep = "\t", quoting=csv.QUOTE_NONE)
|
|
dev_1 = pd.read_csv("dev-1/in.tsv", error_bad_lines = False, header = None, sep = "\t", quoting=csv.QUOTE_NONE,)
|
|
test = pd.read_csv("test-A/in.tsv", names = train_nm, sep = "\t")
|
|
print('DONE31!')
|
|
|
|
|
|
test_file= tfidvectorizer.transform(test['data'])
|
|
test_file_predict = lm_model.predict(test_file)
|
|
with open('test-A/out.tsv', 'w') as file:
|
|
for i in test_file_predict:
|
|
file.write("%f\n" % i)
|
|
|
|
print('DONE38!')
|
|
|
|
|