forked from kubapok/auta-public
rozw
This commit is contained in:
parent
5c4bb10ddf
commit
e5b6049d8e
29
MainDev.py
Normal file
29
MainDev.py
Normal file
@ -0,0 +1,29 @@
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn import preprocessing
|
||||
from sklearn import linear_model
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
myT = pd.read_csv('train/train.tsv', sep='\t',
|
||||
names = ['price','mileage','year','brand','engineType','engineCapacity'])
|
||||
datF = pd.DataFrame(myT,
|
||||
columns = ['price','mileage','year','brand','engineType','engineCapacity'])
|
||||
y = datF[['price']]
|
||||
x = datF[['year','mileage','engineCapacity']]
|
||||
reg = linear_model.LinearRegression()
|
||||
reg.fit(x, y)
|
||||
put = pd.read_csv('dev-0/in.tsv', sep = '\t',
|
||||
names = ['mileage','year','brand','engineType','engineCapacity'])
|
||||
datF = pd.DataFrame(put,
|
||||
columns = ['mileage','year','brand','engineType','engineCapacity'])
|
||||
r = datF[['year','mileage','engineCapacity']]
|
||||
y1 = reg.predict(r)
|
||||
y1 = np.concatenate(y1)
|
||||
tmp = np.array2string(y1, precision = 5,
|
||||
separator = '\n', suppress_small = True)
|
||||
tmp = tmp.lstrip('[').rstrip(']')
|
||||
f = open("dev-0/out.tsv", "a")
|
||||
f.write(tmp)
|
29
MainTest.py
Normal file
29
MainTest.py
Normal file
@ -0,0 +1,29 @@
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn import preprocessing
|
||||
from sklearn import linear_model
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
myT = pd.read_csv('train/train.tsv', sep='\t',
|
||||
names = ['price','mileage','year','brand','engineType','engineCapacity'])
|
||||
datF = pd.DataFrame(myT,
|
||||
columns = ['price','mileage','year','brand','engineType','engineCapacity'])
|
||||
y = datF[['price']]
|
||||
x = datF[['year','mileage','engineCapacity']]
|
||||
reg = linear_model.LinearRegression()
|
||||
reg.fit(x, y)
|
||||
put = pd.read_csv('test-A/in.tsv', sep = '\t',
|
||||
names = ['mileage','year','brand','engineType','engineCapacity'])
|
||||
datF = pd.DataFrame(put,
|
||||
columns = ['mileage','year','brand','engineType','engineCapacity'])
|
||||
r = datF[['year','mileage','engineCapacity']]
|
||||
y1 = reg.predict(r)
|
||||
y1 = np.concatenate(y1)
|
||||
tmp = np.array2string(y1, precision = 5,
|
||||
separator = '\n', suppress_small = True)
|
||||
tmp = tmp.lstrip('[').rstrip(']')
|
||||
f = open("test-A/out.tsv", "a")
|
||||
f.write(tmp)
|
Loading…
Reference in New Issue
Block a user