forked from kubapok/auta-public
Compare commits
No commits in common. "master" and "master" have entirely different histories.
29
MainDev.py
29
MainDev.py
@ -1,29 +0,0 @@
|
|||||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
||||||
from sklearn.linear_model import LinearRegression
|
|
||||||
from sklearn.pipeline import make_pipeline
|
|
||||||
from sklearn import preprocessing
|
|
||||||
from sklearn import linear_model
|
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
myT = pd.read_csv('train/train.tsv', sep='\t',
|
|
||||||
names = ['price','mileage','year','brand','engineType','engineCapacity'])
|
|
||||||
datF = pd.DataFrame(myT,
|
|
||||||
columns = ['price','mileage','year','brand','engineType','engineCapacity'])
|
|
||||||
y = datF[['price']]
|
|
||||||
x = datF[['year','mileage','engineCapacity']]
|
|
||||||
reg = linear_model.LinearRegression()
|
|
||||||
reg.fit(x, y)
|
|
||||||
put = pd.read_csv('dev-0/in.tsv', sep = '\t',
|
|
||||||
names = ['mileage','year','brand','engineType','engineCapacity'])
|
|
||||||
datF = pd.DataFrame(put,
|
|
||||||
columns = ['mileage','year','brand','engineType','engineCapacity'])
|
|
||||||
r = datF[['year','mileage','engineCapacity']]
|
|
||||||
y1 = reg.predict(r)
|
|
||||||
y1 = np.concatenate(y1)
|
|
||||||
tmp = np.array2string(y1, precision = 5,
|
|
||||||
separator = '\n', suppress_small = True)
|
|
||||||
tmp = tmp.lstrip('[').rstrip(']')
|
|
||||||
f = open("dev-0/out.tsv", "a")
|
|
||||||
f.write(tmp)
|
|
29
MainTest.py
29
MainTest.py
@ -1,29 +0,0 @@
|
|||||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
||||||
from sklearn.linear_model import LinearRegression
|
|
||||||
from sklearn.pipeline import make_pipeline
|
|
||||||
from sklearn import preprocessing
|
|
||||||
from sklearn import linear_model
|
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
myT = pd.read_csv('train/train.tsv', sep='\t',
|
|
||||||
names = ['price','mileage','year','brand','engineType','engineCapacity'])
|
|
||||||
datF = pd.DataFrame(myT,
|
|
||||||
columns = ['price','mileage','year','brand','engineType','engineCapacity'])
|
|
||||||
y = datF[['price']]
|
|
||||||
x = datF[['year','mileage','engineCapacity']]
|
|
||||||
reg = linear_model.LinearRegression()
|
|
||||||
reg.fit(x, y)
|
|
||||||
put = pd.read_csv('test-A/in.tsv', sep = '\t',
|
|
||||||
names = ['mileage','year','brand','engineType','engineCapacity'])
|
|
||||||
datF = pd.DataFrame(put,
|
|
||||||
columns = ['mileage','year','brand','engineType','engineCapacity'])
|
|
||||||
r = datF[['year','mileage','engineCapacity']]
|
|
||||||
y1 = reg.predict(r)
|
|
||||||
y1 = np.concatenate(y1)
|
|
||||||
tmp = np.array2string(y1, precision = 5,
|
|
||||||
separator = '\n', suppress_small = True)
|
|
||||||
tmp = tmp.lstrip('[').rstrip(']')
|
|
||||||
f = open("test-A/out.tsv", "a")
|
|
||||||
f.write(tmp)
|
|
1000
dev-0/out.tsv
1000
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
1000
test-A/out.tsv
1000
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user