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1. Admin

2. Recommender systems in real world

3. Overview of recommenders

4. Basic recommenders

5. Idea behind Amazon, Netflix 
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About the teacher
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• Piotr Zioło

• Experience:

• RoomSage

• Bidding optimization on Google Ads

• Personalized recommenders for hotels

• Cooperation with Princeton University

• Polish Academy of Sciences

• Mathematical modeling

• Complex systems optimization

• Data science

• Algo-trading

• PhD in functional analysis



Class info
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• 5 of March – 18 of June

• Teaching materials – Teams->Files

• Code: https://github.com/PiotrZiolo
(repositories will appear in due time)

• Discussion of problems: Teams->Channels

• Contact:

▪ Email: pziolo@amu.edu.pl

▪ Chat  in Teams



Class plan
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YouTube recommender

Neural collaborative filtering

PyTorch, neural nets refresher

Netflix recommender

Optimizers (algorithms finding maximum/minimum of a function)

Amazon recommender

Collaborative filtering (user-to-user, item-to-item)

Basic recommenders and evaluation

Dataset preparation – Numpy, Pandas refresher



Environment
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• Anaconda:

https://www.anaconda.com/products/individual

install before the next class

• Python 3.8

• Mostly work in Jupyter Notebooks

test if works well before the next class

• Conda environment file will be sent before the next class

https://www.anaconda.com/products/individual


Assessment
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• Assignments in Teams after most classes – 50% of total points

• 3 projects – 50% of total points

• A link to a GitHub repo with project solution should be sent to: 
pziolo@amu.edu.pl
(detailed instructions will be given with every project)

Grade Criterion

bardzo dobry (bdb; 5,0) Above 90%

dobry plus (+db; 4,5) Above 80%

dobry (db; 4,0) Above 70%

dostateczny plus (+dst; 3,5) Above 60%

dostateczny (dst; 3,0) Above 50%

niedostateczny (ndst; 2,0) Less than 50%
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Examples of recommender systems
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eCommerce:

• Amazon

• Allegro

Multimedia:

• YouTube

• Netflix

• Spotify

Social media

• Facebook

Job recommendations

• OLX

(E-)Learning

E-Government

Tourism

Personal assistants



The Netflix Prize

11

• Competition held between 2006 and 2009

• Sparked large interest in the field

• Data set of 100 480 507 ratings that 480 189 users gave to 17 770 movies

• Each training rating is a quadruplet of the form <user, movie, date of grade, grade>

• The goal was to achieve the lowest RMSE on grade predictions on a test set

• 1 mln $ prize for beating the benchmark by 10% (RMSE=0.8572)

• 50k$ every year for the best result if final goal not achieved

• Overall over 50 thousands teams took part

• Won by BellKor’s Pragmatic Chaos on the 18 of September, 2009 (RMSE=0.8567)

• Koren Y., Bell R., Volinsky C., Matrix factorization techniques for recommender 

systems, Computer, 2009 

• https://en.wikipedia.org/wiki/Netflix_Prize

https://en.wikipedia.org/wiki/Netflix_Prize
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Definition and goals
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Definition: Recommender system

A recommender system calculates and provides relevant content to the user 

based on knowledge of the user, content, and interactions between the user and 

the item.

Goals

• Business – maximize sales/watch time

• Relevance – provide meaningful choices among millions of options

• Diversity – expose long-tail products

• Serendipity – match people with products they might not even be aware of



Challenges
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❑ High hit ratio/accuracy

❑ Scalability

❑ Fast updating (after each user action)

❑ Sparsity (even 99.9% unknown interactions)

❑ Cold-start problem (user and entire system)

❑ Implicit feedback

❑ Long-tail

❑ Changing preferences

❑ Context awareness

❑ Attack resistance



Mathematical formulation
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User-item rating/interaction matrix 𝑅 ∈ ℝ𝑀×𝑁:

𝑅 =

𝑟1,1 ? 𝑟1,3 ⋯ 𝑟1,𝑁
𝑟2,1 𝑟2,2 ? ⋯ ?

? 𝑟3,2 ? ⋯ ?

⋮ ⋮ ⋮ ⋱ ⋮
𝑟𝑀,1 ? 𝑟𝑀,3 ⋯ 𝑟𝑀,𝑁

where 𝑟𝑢,𝑖 denotes the interaction of user u with item i. This interaction might be:

• a boolean indicating that a user bought or watched an item,

• a number of given items bought by a user,

• a rating the user has assigned to the item.

In mathematical terms the recommender has to predict Ƹ𝑟𝑢,𝑖 - the expected value 

of 𝑟𝑢,𝑖 using previous interactions, user characteristics, item features and context 

information (time, external events etc.).



Input data

16

Interactions

Bought/watched or not

Number of bought items

Rating

User characteristics

Gender

Age

Location

Personal interests

Item features

Category/genre

Price

Reviews

Movie length

Actors

Producer/seller/channel

Context

Time of day, week, year

What the user 
bought/watched just before

Time since the last 
interaction

External events



Explicit/implicit feedback
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Classification
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Non-personalized – baseline
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Most popular

• Choose the item bought/watched the most and recommend it to every user

Context-aware most popular

• Create a model predicting the most popular item based on context data 

(e.g. day of week, Black Friday)

• Choose the most appropriate offer for the given context and recommend it to 

the user

Highest rated

• Choose the item rated highest and recommend it to every user

Random

• Choose an item at random and recommend it to the user



Personalized – baseline
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Repeat

• Recommend the item the user is buying most often

Most popular in clusters

• Cluster users based on their features (for instance with K-means)

• For every cluster find the most popular item

• For a given user recommend the most popular item for their cluster

Nearest neighbours

• For every user prepare the interaction vector 𝑝𝑢 (respective row from the 

interaction matrix)

• Find nearest neighbours of a given user in the space of those vectors

• Calculate popularity/average ratings for items bought/watched by those 

neighbours

• Out of items bought/watched by those neighbours recommend the most 

popular/highest rated item the user hasn’t yet bought/watched
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Amazon recommender
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Amazon recommender

• Calculate conditional probabilities – if a user bought item X what is the 

chance they will buy item Y

• For a given user take the set of all his purchases 𝑆

• For every other item look up its probability conditional on items from 𝑆

• Recommend items with the highest conditional probabilities



Netflix recommender
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Netflix recommender

• Take the interaction matrix 𝑅 = [𝑟𝑢,𝑖]

• Pose the predictive problem in the form 

Ƹ𝑟𝑢,𝑖 = ෍

𝑘=1

𝐷

𝑝𝑢,𝑘 𝑞𝑖,𝑘

• Solve the above problem for vectors Ԧ𝑝𝑢 and Ԧ𝑞𝑖 using Stochastic Gradient 

Descent (SGD) or Alternating Least Squares (ALS)

• For a given user calculate the score for every item as Ԧ𝑝𝑢
𝑇 ∙ Ԧ𝑞𝑖 and 

recommend the items with the highest score

Add user and item biases Add time dependencies

Add user and item features



YouTube recommender
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YouTube recommender

• Use Deep Candidate Generation Network to choose a set of hundreds of 

candidate videos for a given user

• Use Deep Ranking Network to score each of those candidates separately for 

this user

• Show recommended videos in the order of the above score



YouTube recommender – Deep Candidate Generation network
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YouTube recommender – Deep Ranking network

27


