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evaluation



Testing 
schemes

• Online

• A/B tests

• Offline

• Train-test split

• Train-validation-test split

• Cross-validation

• Leave-one-out



A/B tests

• Assumes that a model/algorithm is already used 
in production

• Split all cases when the algorithm is used into two 
groups: A and B
(typically 50%-50%)

• After a predefined time gather and compare 
results of both models/algorithms

• Examples:

• Two recommenders on YouTube – users are 
randomly split in half

• Two trading algorithms – stocks are 
randomly assigned to two groups

• Two website versions are presented to users 
– cookies are randomly assigned to both 
groups



Train-test split

• Divide the dataset into two parts:

• training set

• test set

• Train the model on the training set

• Evaluate the model on the test set

+ Good when the dataset is large and training
is expensive

- A single dataset split may not properly reflect model’s ability 
to generalize



Train-validation-test split
• Divide the dataset into three parts:

• training set

• validation set

• test set

• Train the model on the training set with many sets of hyperparameters

• Evaluate all trained models on the validation set

• Choose hyperparameters which give the best result

• Evaluate the final model on the test set to check for overfitting

+ Good when the dataset is large and training is expensive

+ Allows for a proper hyperparameter tuning

- A single dataset split may not properly reflect model’s ability to generalize



Cross-validation
• Divide the dataset 𝐷 into K equal-sized parts

• Train and evaluate the model K times in the 
following way:

• Choose the i-th dataset part 𝐷𝑖
• Train the model on 𝐷\𝐷𝑖
• Evaluate the model on 𝐷𝑖

• Gather all K results and aggregate them into a single 
measure (for instance by taking an average)

+ Allows to test the model on the entire dataset 
removing the risk of choosing an atypical split

- When K is large and model training is expensive, this 
method requires a long processing time



Leave-one-out

• Leave-one-out is an extreme case of cross-validation where K is equal to the number of elements in the dataset

• Train and evaluate the model K times in the following way:

• Choose the i-th element 𝑦𝑖 ∈ 𝐷

• Train the model on 𝐷\{𝑦𝑖}

• Evaluate the model on 𝑦𝑖

• Gather all results and aggregate them into a single measure

+ Allows to test the model on the entire dataset removing 
the risk of choosing an atypical split

+ Good when the training set is small

+ Good when the typical proportion of the production training 
dataset size is large compared to the number of predictions to be made

- For even moderately complex models requires a long processing time



Evaluation 
measures

Regression

• MSE

• RMSE

• MAE

• MAPE (MRE)

• TRE

Classification

• Sensitivity/Recall/True Positive Rate

• Precision

• Accuracy

• F1 score

Ranking

• HR@n

• NDCG@n

• MAP@n



Regression evaluation measures
• MSE – Mean Squared Error
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• RMSE – Root Mean Squared Error

1

𝑛
෍

𝑖=1

𝑛

( ො𝑦𝑖 − 𝑦𝑖)2

• MAE – Mean Absolute Error
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• MAPE (MRE) – Mean Absolute Percentage Error (Mean Relative Error)
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• TRE – Total Relative Error
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Classification evaluation measures

• Sensitivity/Recall/True Positive Rate
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Ranking evaluation measures
• HR@n – Hit Ratio
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• NDCG@n – Normalized Discounted Cumulative Gain
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• MAP@n – Mean Average Precision
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Position Movie Score

1 Rocky 0.98

2 Interstellar 0.86

3 Shrek 0.83

4 Shawshank Redemption 0.75

5 Lion King 0.69

6 Star Wars 0.61

7 Apocalypto 0.55

𝐷𝑢- items user 𝑢 actually interacted with 
𝑟𝑢,𝑘 - k-th recommendation for user 𝑢
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Other 
evaluation 
measures

Coverage

• The percentage of all available items in the first n 
recommendations for all users

Novelty

• Evaluates the likelihood that the user was not aware of 
the recommended items

Serendipity

• Should measure the surprise effect in recommendations

Diversity

• The first n recommendations should be diverse enough 
so that if the user does not like the first item he/she 
might still like the other recommendations



Explicit feedback vs implicit feedback testing

• Treat the recommender as a typical regressor and use regression measures to evaluate it

• Generate prediction for every pair user-item in the test set

• You can simplify the testing scheme by generating a single prediction at a time

• When serving recommend items with highest predictions first

Explicit feedback, e.g. ratings

• Generate a set of recommendations for each user in the test set
(typically by assigning a score to every item in the set of items the user have not interacted with)

• Use ranking evaluation measures to take positions into account

Implicit feedback, e.g. binary indicators if there was an interaction or not


