meh/recommender-systems-class-master/recommenders/nearest_neighbors_recommender.py
2021-07-07 20:03:54 +02:00

234 lines
8.8 KiB
Python

# Load libraries ---------------------------------------------
import pandas as pd
import numpy as np
from recommenders.recommender import Recommender
# ------------------------------------------------------------
class NearestNeighborsRecommender(Recommender):
"""
Nearest neighbors recommender allowing to do user-based or item-based collaborative filtering.
Possible similarity measures:
- 'cosine',
- 'pearson'.
"""
def __init__(self):
super().__init__()
self.recommender_df = pd.DataFrame(columns=['user_id', 'item_id', 'score'])
self.interactions_df = None
self.item_id_mapping = None
self.user_id_mapping = None
self.item_id_reverse_mapping = None
self.user_id_reverse_mapping = None
self.r = None
self.similarities = None
self.most_popular_items = None
self.collaboration_type = 'user'
self.similarity_measure = 'cosine'
self.n_neighbors = 10
self.should_recommend_already_bought = False
def initialize(self, **params):
if 'n_neighbors' in params:
self.n_neighbors = params['n_neighbors']
if 'should_recommend_already_bought' in params:
self.should_recommend_already_bought = params['should_recommend_already_bought']
def fit(self, interactions_df, users_df, items_df):
"""
Training of the recommender.
:param pd.DataFrame interactions_df: DataFrame with recorded interactions between users and items
defined by user_id, item_id and features of the interaction.
:param pd.DataFrame users_df: DataFrame with users and their features defined by
user_id and the user feature columns.
:param pd.DataFrame items_df: DataFrame with items and their features defined
by item_id and the item feature columns.
"""
del users_df, items_df
# Shift item ids and user ids so that they are consecutive
unique_item_ids = interactions_df['item_id'].unique()
self.item_id_mapping = dict(zip(unique_item_ids, list(range(len(unique_item_ids)))))
self.item_id_reverse_mapping = dict(zip(list(range(len(unique_item_ids))), unique_item_ids))
unique_user_ids = interactions_df['user_id'].unique()
self.user_id_mapping = dict(zip(unique_user_ids, list(range(len(unique_user_ids)))))
self.user_id_reverse_mapping = dict(zip(list(range(len(unique_user_ids))), unique_user_ids))
interactions_df = interactions_df.copy()
interactions_df.replace({'item_id': self.item_id_mapping, 'user_id': self.user_id_mapping}, inplace=True)
# Get the number of items and users
self.interactions_df = interactions_df
n_items = np.max(interactions_df['item_id']) + 1
n_users = np.max(interactions_df['user_id']) + 1
# Get the user-item interaction matrix (mapping to int is necessary because of how iterrows works)
r = np.zeros(shape=(n_users, n_items))
for idx, interaction in interactions_df.iterrows():
r[int(interaction['user_id'])][int(interaction['item_id'])] = 1
if self.collaboration_type == 'item':
r = r.T
self.r = r
# Calculate all similarities
similarities = None
if self.similarity_measure == 'cosine':
n_uv = np.matmul(r, r.T)
norms = np.sqrt(np.diag(n_uv))
similarities = n_uv / norms[:, np.newaxis] / norms[np.newaxis, :]
elif self.similarity_measure == 'pearson':
r_shifted = r - np.mean(r, axis=1).reshape(-1, 1)
n_uv = np.matmul(r_shifted, r_shifted.T)
norms = np.sqrt(np.diag(n_uv))
norms[norms == 0] = 0.000001
similarities = n_uv / norms[:, np.newaxis] / norms[np.newaxis, :]
np.fill_diagonal(similarities, -1000)
self.similarities = similarities
# Find the most popular items for the cold start problem
offers_count = interactions_df.loc[:, ['item_id', 'user_id']].groupby(by='item_id').count()
offers_count = offers_count.sort_values('user_id', ascending=False)
self.most_popular_items = offers_count.index
def recommend(self, users_df, items_df, n_recommendations=1):
"""
Serving of recommendations. Scores items in items_df for each user in users_df and returns
top n_recommendations for each user.
:param pd.DataFrame users_df: DataFrame with users and their features for which
recommendations should be generated.
:param pd.DataFrame items_df: DataFrame with items and their features which should be scored.
:param int n_recommendations: Number of recommendations to be returned for each user.
:return: DataFrame with user_id, item_id and score as columns returning n_recommendations top recommendations
for each user.
:rtype: pd.DataFrame
"""
# Clean previous recommendations (iloc could be used alternatively)
self.recommender_df = self.recommender_df[:0]
# Handle users not in the training data
# Map item ids
items_df = items_df.copy()
items_df = items_df.loc[items_df['item_id'].isin(self.item_id_mapping)]
items_df.replace({'item_id': self.item_id_mapping}, inplace=True)
# Generate recommendations
for idx, user in users_df.iterrows():
recommendations = []
user_id = user['user_id']
if user_id in self.user_id_mapping:
chosen_ids = []
scores = []
mapped_user_id = self.user_id_mapping[user_id]
if self.collaboration_type == 'user':
neighbor_ids = np.argsort(-self.similarities[mapped_user_id])[:self.n_neighbors]
user_similarities = self.similarities[mapped_user_id][neighbor_ids]
item_ids = items_df['item_id'].tolist()
v_i = self.r[neighbor_ids][:, item_ids]
scores = np.matmul(user_similarities, v_i) / np.sum(user_similarities)
# Choose n recommendations based on highest scores
if not self.should_recommend_already_bought:
x_list = self.interactions_df.loc[
self.interactions_df['user_id'] == mapped_user_id]['item_id'].tolist()
scores[x_list] = -1e100
chosen_ids = np.argsort(-scores)[:n_recommendations]
elif self.collaboration_type == 'item':
x_list = self.interactions_df.loc[
self.interactions_df['user_id'] == mapped_user_id]['item_id'].tolist()
scores = np.sum(self.similarities[x_list], axis=0)
# Choose n recommendations based on highest scores
if not self.should_recommend_already_bought:
scores[x_list] = -1e100
chosen_ids = np.argsort(-scores)[:n_recommendations]
for item_id in chosen_ids:
recommendations.append(
{
'user_id': self.user_id_reverse_mapping[mapped_user_id],
'item_id': self.item_id_reverse_mapping[item_id],
'score': scores[item_id]
}
)
else: # For new users recommend most popular items
for i in range(n_recommendations):
recommendations.append(
{
'user_id': user['user_id'],
'item_id': self.item_id_reverse_mapping[self.most_popular_items[i]],
'score': 1.0
}
)
user_recommendations = pd.DataFrame(recommendations)
self.recommender_df = pd.concat([self.recommender_df, user_recommendations])
return self.recommender_df
class UserBasedCosineNearestNeighborsRecommender(NearestNeighborsRecommender):
def __init__(self):
super().__init__()
self.collaboration_type = 'user'
self.similarity_measure = 'cosine'
class UserBasedPearsonNearestNeighborsRecommender(NearestNeighborsRecommender):
def __init__(self):
super().__init__()
self.collaboration_type = 'user'
self.similarity_measure = 'pearson'
class ItemBasedCosineNearestNeighborsRecommender(NearestNeighborsRecommender):
def __init__(self):
super().__init__()
self.collaboration_type = 'item'
self.similarity_measure = 'cosine'
class ItemBasedPearsonNearestNeighborsRecommender(NearestNeighborsRecommender):
def __init__(self):
super().__init__()
self.collaboration_type = 'item'
self.similarity_measure = 'pearson'