Panda3
This commit is contained in:
parent
c6566dd4e8
commit
2fa5ee6636
2500
dev-0/out.tsv
2500
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
267
main.py
267
main.py
@ -1,222 +1,105 @@
|
|||||||
#!/usr/bin/env python
|
# noinspection PyUnresolvedReferences
|
||||||
# coding: utf-8
|
|
||||||
|
|
||||||
# In[1]:
|
|
||||||
|
|
||||||
|
|
||||||
import csv
|
import csv
|
||||||
|
import torch
|
||||||
|
|
||||||
# In[2]:
|
|
||||||
|
|
||||||
|
|
||||||
get_ipython().system('pip install gensim')
|
|
||||||
|
|
||||||
|
|
||||||
# In[17]:
|
|
||||||
|
|
||||||
|
|
||||||
import nltk
|
|
||||||
nltk.download('punkt')
|
|
||||||
|
|
||||||
|
|
||||||
# In[9]:
|
|
||||||
|
|
||||||
|
|
||||||
get_ipython().system('pip install nltk')
|
|
||||||
|
|
||||||
|
|
||||||
# In[3]:
|
|
||||||
|
|
||||||
|
|
||||||
get_ipython().system('pip install torch')
|
|
||||||
|
|
||||||
|
|
||||||
# In[4]:
|
|
||||||
|
|
||||||
|
|
||||||
import gensim.downloader
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import torch
|
from nltk.util import pr
|
||||||
|
from gensim import downloader
|
||||||
|
from nltk.tokenize import word_tokenize
|
||||||
|
|
||||||
|
BATCH_SIZE = 5
|
||||||
|
|
||||||
# In[5]:
|
class NeuralNetworkModel(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
import torch.nn as nn
|
dim = 200
|
||||||
from nltk import word_tokenize
|
super(NeuralNetworkModel, self).__init__()
|
||||||
|
self.one = torch.nn.Linear(dim, 500)
|
||||||
|
self.two = torch.nn.Linear(500, 1)
|
||||||
# In[13]:
|
|
||||||
|
|
||||||
|
|
||||||
header_names = ["content", "id", "label"]
|
|
||||||
|
|
||||||
|
|
||||||
# In[23]:
|
|
||||||
|
|
||||||
|
|
||||||
class FF(nn.Module):
|
|
||||||
def __init__(self, input_dim, hidden_dim, output_dim):
|
|
||||||
super(FF, self).__init__()
|
|
||||||
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
|
||||||
self.relu1 = nn.ReLU()
|
|
||||||
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
|
|
||||||
self.relu2 = nn.ReLU()
|
|
||||||
self.fc3 = nn.Linear(hidden_dim, output_dim)
|
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
out = self.fc1(x)
|
x = self.one(x)
|
||||||
out = self.relu1(out)
|
x = torch.relu(x)
|
||||||
out = self.relu2(out)
|
x = self.two(x)
|
||||||
out = self.fc3(out)
|
x = torch.sigmoid(x)
|
||||||
return torch.sigmoid(out)
|
return x
|
||||||
|
|
||||||
train_set_labels = pd.read_table(
|
def read_data():
|
||||||
"train/expected.tsv",
|
x_labels = (pd.read_csv('in-header.tsv', sep='\t')).columns
|
||||||
error_bad_lines=False,
|
y_labels = (pd.read_csv('out-header.tsv', sep='\t')).columns
|
||||||
quoting=csv.QUOTE_NONE,
|
|
||||||
header=None,
|
|
||||||
names=header_names[2:],
|
|
||||||
)
|
|
||||||
|
|
||||||
train_set_features = pd.read_table(
|
x_train = pd.read_table('train/in.tsv', header=None, quoting=csv.QUOTE_NONE, names=x_labels)
|
||||||
"train/in.tsv.xz",
|
y_train = pd.read_table('train/expected.tsv', header=None, quoting=csv.QUOTE_NONE, names=y_labels)
|
||||||
error_bad_lines=False,
|
x_dev = pd.read_table('dev-0/in.tsv', header=None, quoting=csv.QUOTE_NONE, names=x_labels)
|
||||||
quoting=csv.QUOTE_NONE,
|
x_test = pd.read_table('test-A/in.tsv', header=None, quoting=csv.QUOTE_NONE, names=x_labels)
|
||||||
header=None,
|
|
||||||
names=header_names[:2],
|
|
||||||
)
|
|
||||||
|
|
||||||
|
# remove some rows for faster development
|
||||||
|
remove_n = 200000
|
||||||
|
drop_indices = np.random.choice(x_train.index, remove_n, replace=False)
|
||||||
|
x_train = x_train.drop(drop_indices)
|
||||||
|
y_train = y_train.drop(drop_indices)
|
||||||
|
|
||||||
test_set = pd.read_table(
|
return x_labels, y_labels, x_train, y_train, x_dev, x_test
|
||||||
"test-A/in.tsv.xz",
|
|
||||||
error_bad_lines=False,
|
|
||||||
header=None,
|
|
||||||
quoting=csv.QUOTE_NONE,
|
|
||||||
names=header_names[:2],
|
|
||||||
)
|
|
||||||
|
|
||||||
dev_set = pd.read_table(
|
def process_data(x_labels, y_labels, x_train, y_train, x_dev, x_test):
|
||||||
"dev-0/in.tsv.xz",
|
x_train = x_train[x_labels[0]].str.lower()
|
||||||
error_bad_lines=False,
|
x_dev = x_dev[x_labels[0]].str.lower()
|
||||||
header=None,
|
x_test = x_test[x_labels[0]].str.lower()
|
||||||
quoting=csv.QUOTE_NONE,
|
y_train = y_train[y_labels[0]]
|
||||||
names=header_names[:2],
|
|
||||||
)
|
|
||||||
X_train = train_set_features["content"].str.lower()
|
|
||||||
y_train = train_set_labels["label"]
|
|
||||||
|
|
||||||
X_dev = dev_set["content"].str.lower()
|
x_train = [word_tokenize(x) for x in x_train]
|
||||||
X_test = test_set["content"].str.lower()
|
x_dev = [word_tokenize(x) for x in x_dev]
|
||||||
X_train = [word_tokenize(content) for content in X_train]
|
x_test = [word_tokenize(x) for x in x_test]
|
||||||
X_dev = [word_tokenize(content) for content in X_dev]
|
|
||||||
X_test = [word_tokenize(content) for content in X_test]
|
|
||||||
word2vec = gensim.downloader.load("word2vec-google-news-300")
|
|
||||||
|
|
||||||
|
w2v = downloader.load('glove-wiki-gigaword-200')
|
||||||
|
|
||||||
# In[24]:
|
x_train = [np.mean([w2v[w] for w in d if w in w2v] or [np.zeros(200)], axis=0) for d in x_train]
|
||||||
|
x_dev = [np.mean([w2v[w] for w in d if w in w2v] or [np.zeros(200)], axis=0) for d in x_dev]
|
||||||
|
x_test = [np.mean([w2v[w] for w in d if w in w2v] or [np.zeros(200)], axis=0) for d in x_test]
|
||||||
|
|
||||||
|
return x_train, y_train, x_dev, x_test
|
||||||
|
|
||||||
X_train = [
|
def predict(model, x_data, out_path):
|
||||||
np.mean(
|
y_out = []
|
||||||
[word2vec[word] for word in content if word in word2vec] or [np.zeros(300)],
|
model.eval()
|
||||||
axis=0,
|
with torch.no_grad():
|
||||||
)
|
for i in range(0, len(x_data), BATCH_SIZE):
|
||||||
for content in X_train
|
x = x_data[i:i + BATCH_SIZE]
|
||||||
]
|
x = torch.tensor(x)
|
||||||
X_dev = [
|
pred = nn_model(x.float())
|
||||||
np.mean(
|
|
||||||
[word2vec[word] for word in content if word in word2vec] or [np.zeros(300)],
|
|
||||||
axis=0,
|
|
||||||
)
|
|
||||||
for content in X_dev
|
|
||||||
]
|
|
||||||
|
|
||||||
X_test = [
|
y_pred = (pred > 0.5)
|
||||||
np.mean(
|
y_out.extend(y_pred)
|
||||||
[word2vec[word] for word in content if word in word2vec] or [np.zeros(300)],
|
|
||||||
axis=0,
|
|
||||||
)
|
|
||||||
for content in X_test
|
|
||||||
]
|
|
||||||
hidden_layer = 650
|
|
||||||
epochs = 15
|
|
||||||
batch_size = 10
|
|
||||||
|
|
||||||
|
y_data = np.asarray(y_out, dtype=np.int32)
|
||||||
|
pd.DataFrame(y_data).to_csv(out_path, sep='\t', index=False, header=False)
|
||||||
|
|
||||||
# In[27]:
|
if __name__ == "__main__":
|
||||||
|
x_labels, y_labels, x_train, y_train, x_dev, x_test = read_data()
|
||||||
|
|
||||||
|
x_train, y_train, x_dev, x_test = process_data(x_labels, y_labels, x_train, y_train, x_dev, x_test)
|
||||||
|
|
||||||
output_dim = 1
|
nn_model = NeuralNetworkModel()
|
||||||
|
|
||||||
|
criterion = torch.nn.BCELoss()
|
||||||
|
optimizer = torch.optim.SGD(nn_model.parameters(), lr=0.1)
|
||||||
|
|
||||||
input_dim =300
|
for epoch in range(5):
|
||||||
model = FF(input_dim, hidden_layer, output_dim)
|
nn_model.train()
|
||||||
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
|
|
||||||
criterion = torch.nn.BCELoss()
|
|
||||||
|
|
||||||
|
for i in range(0, y_train.shape[0], BATCH_SIZE):
|
||||||
|
X = x_train[i:i + BATCH_SIZE]
|
||||||
|
X = torch.tensor(X)
|
||||||
|
|
||||||
# In[28]:
|
Y = y_train[i:i + BATCH_SIZE]
|
||||||
|
Y = torch.tensor(Y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
||||||
|
Y_predictions = nn_model(X.float())
|
||||||
for epoch in range(epochs):
|
|
||||||
model.train()
|
|
||||||
for i in range(0, y_train.shape[0], batch_size):
|
|
||||||
X = X_train[i : i + batch_size]
|
|
||||||
X = torch.tensor(X)
|
|
||||||
y = y_train[i : i + batch_size]
|
|
||||||
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
|
||||||
|
|
||||||
outputs = model(X.float())
|
|
||||||
loss = criterion(outputs, y)
|
|
||||||
|
|
||||||
optimizer.zero_grad()
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
test_prediction = []
|
|
||||||
dev_prediction = []
|
|
||||||
model.eval()
|
|
||||||
with torch.no_grad():
|
|
||||||
for i in range(0, len(X_test), batch_size):
|
|
||||||
X = X_test[i : i + batch_size]
|
|
||||||
X = torch.tensor(X)
|
|
||||||
|
|
||||||
outputs = model(X.float())
|
|
||||||
|
|
||||||
prediction = outputs > 0.5
|
|
||||||
test_prediction += prediction.tolist()
|
|
||||||
|
|
||||||
for i in range(0, len(X_dev), batch_size):
|
|
||||||
X = X_dev[i : i + batch_size]
|
|
||||||
X = torch.tensor(X)
|
|
||||||
|
|
||||||
outputs = model(X.float())
|
|
||||||
|
|
||||||
prediction = outputs > 0.5
|
|
||||||
dev_prediction += prediction.tolist()
|
|
||||||
|
|
||||||
test_prediction = np.asarray(test_prediction, dtype=np.int32)
|
|
||||||
dev_prediction = np.asarray(dev_prediction, dtype=np.int32)
|
|
||||||
test_prediction.tofile("./test-A/out.tsv", sep="\n")
|
|
||||||
dev_prediction.tofile("./dev-0/out.tsv", sep="\n")
|
|
||||||
|
|
||||||
|
|
||||||
# In[ ]:
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# In[ ]:
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# In[ ]:
|
|
||||||
|
|
||||||
|
|
||||||
|
loss = criterion(Y_predictions, Y)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
predict(nn_model, x_dev, 'dev-0/out.tsv')
|
||||||
|
predict(nn_model, x_test, 'test-A/out.tsv')
|
2216
test-A/out.tsv
2216
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user