import csv import pickle from typing import re import numpy as np import pandas as pd from sklearn.decomposition import PCA from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD def predict(): input_file = open("l_regression.pkl",'rb') l_regression = pickle.load(input_file) input_file = open("tfidf_model.pkl",'rb') tfidf = pickle.load(input_file) dev0 = pd.read_csv("dev-0/in.tsv", delimiter="\t", header=None, names=["txt"], quoting=csv.QUOTE_NONE) testA = pd.read_csv("test-A/in.tsv", delimiter="\t", header=None, names=["txt"], quoting=csv.QUOTE_NONE) devtxt = dev0["txt"] testAtxt = testA["txt"] print(testAtxt) dev0_vector = tfidf.fit_transform(devtxt) testA_vector = tfidf.fit_transform(testAtxt) #print(testA_vector) pca = TruncatedSVD(n_components=100) dev0_pca = pca.fit_transform(dev0_vector) testA_pca = pca.fit_transform(testA_vector) output= open("dev-0/out.tsv","w+",encoding="UTF-8") y_dev = l_regression.predict(dev0_pca) print(y_dev) foo = np.array(y_dev) print(foo) np.savetxt(output,foo) output = open("test-A/out.tsv", "w+", encoding="UTF-8") y_test = l_regression.predict(testA_pca) foo = np.array(y_test) np.savetxt(output,foo) predict()