paranormal-or-skeptic/code_regression.py

130 lines
4.1 KiB
Python
Raw Normal View History

2020-04-02 18:29:06 +02:00
from collections import defaultdict
import math
import pickle
import re
2020-04-04 19:55:07 +02:00
from pip._vendor.msgpack.fallback import xrange
import random
2020-04-02 18:29:06 +02:00
vocabulary=[]
2020-04-02 20:01:33 +02:00
file_to_save=open("test.tsv","w",encoding='utf-8')
2020-04-04 19:55:07 +02:00
def define_vocabulary(file_to_learn_new_words):
word_counts={'count': defaultdict(int)}
with open(file_to_learn_new_words,encoding='utf-8') as in_file:
for line in in_file:
2020-04-02 20:01:33 +02:00
text, timestamp = line.rstrip('\n').split('\t')
tokens = text.lower().split(' ')
for token in tokens:
2020-04-04 19:55:07 +02:00
word_counts['count'][token]+=1
2020-04-02 20:01:33 +02:00
return word_counts
2020-04-02 18:29:06 +02:00
2020-04-05 00:34:05 +02:00
def read_input(file_path):
2020-04-05 20:10:04 +02:00
read_word_counts={'count': defaultdict(int)}
2020-04-05 00:34:05 +02:00
with open(file_path, encoding='utf-8') as in_file:
for line in in_file:
text, timestamp = line.rstrip('\n').split('\t')
tokens = text.lower().split(' ')
for token in tokens:
2020-04-05 20:10:04 +02:00
read_word_counts['count'][token]+=1
return read_word_counts
2020-04-05 00:34:05 +02:00
2020-04-05 20:10:04 +02:00
def training(vocabulary,read_input,expected):
learning_rate=0.00001
learning_precision=0.0000001
weights=[]
iteration=0
loss_sum=0.0
ix=1
readed_words_values = []
for word in read_input['count']:
if word not in vocabulary['count']:
read_input['count'][word]=0
readed_words_values.append(read_input['count'][word])
for ix in range(0,len(vocabulary['count'])+1):
weights.append(random.uniform(-0.001,0.001))
#max_iteration=len(vocabulary['count'])+1
max_iteration=1000
delta=1
while (delta>learning_precision and iteration<max_iteration):
d,y=random.choice(list(read_input['count'].items())) #d-word, y-value of
y_hat=weights[0]
i=0
for word_d in d:
if word_d in vocabulary['count'].keys():
#print(vocabulary['count'][d])
y_hat+=weights[vocabulary['count'][word_d]]*readed_words_values[i]
delta=abs(y_hat-y)*learning_rate
weights[0]=weights[0]-delta
i+=i
i=0
for word_w in d:
if word_w in vocabulary['count'].keys():
weights[vocabulary['count'][word_w]]-=readed_words_values[i]*delta
i+=1
#print(weights)
print(y_hat)
print(y)
loss=(y_hat-y)**2.0
#loss=(y_hat-y)*(y_hat-y)
loss_sum+=loss
if(iteration%1000==0):
print(loss_sum/1000)
iteration=0
loss_sum=0.0
iteration+=1
2020-04-02 18:29:06 +02:00
def main():
2020-04-04 19:55:07 +02:00
vocabulary = define_vocabulary('train/in.tsv')
2020-04-05 20:10:04 +02:00
readed_words=read_input('dev-0/in.tsv')
training(vocabulary,readed_words,'test.tsv')
#def cost_function(y_hat,y):
# loss=(y_hat-y)**2.0
# loss_sum+=loss
# if loss_counter%1000==0:
# print(loss_sum/1000)
# loss_counter=0
# loss_sum=0.0
#def main():
# --------------- initialization ---------------------------------
# vocabulary = define_vocabulary('train/in.tsv')
# readed_words=read_input('dev-0/in.tsv')
# i=1;
# weights=[]
# readed_words_values=[]
# rangeVocabulary=len(vocabulary['count'])+1
# for i in range(rangeVocabulary):
# weights.append(random.randrange(0,len(vocabulary['count'])+1))
# for word in readed_words['count']:
# if word not in vocabulary['count']:
# readed_words['count'][word]=0
# readed_words_values.append(readed_words['count'][word])
# precision=0.00001
# learning_rate=0.00001
# delta=1
# max_iterations=len(vocabulary['count'])+1
# current_iteration=0
# rangeReadedValues=len(readed_words['count'])+1
2020-04-04 19:55:07 +02:00
# --------------- prediction -------------------------------------
2020-04-05 20:10:04 +02:00
# while (delta>precision and current_iteration<max_iterations):
# y=random.choice(readed_words_values)
# y_hat=weights[0]
# i=0
# j=0
# for i in range(rangeReadedValues):
# y_hat+=weights[i]*y
# delta=abs(y_hat-y)*learning_rate
# weights[0]=weights[0]-delta
# for j in range(rangeVocabulary):
# weights[j]-=y*delta
# print(delta)
# current_iteration+=1
2020-04-02 20:01:33 +02:00
2020-04-02 18:29:06 +02:00
main()