2020-04-02 18:29:06 +02:00
|
|
|
from collections import defaultdict
|
|
|
|
import math
|
|
|
|
import pickle
|
|
|
|
import re
|
|
|
|
|
2020-04-04 19:55:07 +02:00
|
|
|
from pip._vendor.msgpack.fallback import xrange
|
|
|
|
import random
|
|
|
|
|
2020-04-02 18:29:06 +02:00
|
|
|
vocabulary=[]
|
|
|
|
|
2020-04-02 20:01:33 +02:00
|
|
|
file_to_save=open("test.tsv","w",encoding='utf-8')
|
2020-04-04 19:55:07 +02:00
|
|
|
def define_vocabulary(file_to_learn_new_words):
|
|
|
|
word_counts={'count': defaultdict(int)}
|
|
|
|
with open(file_to_learn_new_words,encoding='utf-8') as in_file:
|
|
|
|
for line in in_file:
|
2020-04-02 20:01:33 +02:00
|
|
|
text, timestamp = line.rstrip('\n').split('\t')
|
|
|
|
tokens = text.lower().split(' ')
|
|
|
|
for token in tokens:
|
2020-04-04 19:55:07 +02:00
|
|
|
word_counts['count'][token]+=1
|
2020-04-02 20:01:33 +02:00
|
|
|
return word_counts
|
2020-04-02 18:29:06 +02:00
|
|
|
|
2020-04-05 00:34:05 +02:00
|
|
|
def read_input(file_path):
|
2020-04-05 20:10:04 +02:00
|
|
|
read_word_counts={'count': defaultdict(int)}
|
2020-04-05 00:34:05 +02:00
|
|
|
with open(file_path, encoding='utf-8') as in_file:
|
|
|
|
for line in in_file:
|
|
|
|
text, timestamp = line.rstrip('\n').split('\t')
|
|
|
|
tokens = text.lower().split(' ')
|
|
|
|
for token in tokens:
|
2020-04-05 20:10:04 +02:00
|
|
|
read_word_counts['count'][token]+=1
|
|
|
|
return read_word_counts
|
2020-04-05 00:34:05 +02:00
|
|
|
|
2020-04-05 20:10:04 +02:00
|
|
|
def training(vocabulary,read_input,expected):
|
|
|
|
learning_rate=0.00001
|
|
|
|
learning_precision=0.0000001
|
|
|
|
weights=[]
|
|
|
|
iteration=0
|
|
|
|
loss_sum=0.0
|
|
|
|
ix=1
|
|
|
|
readed_words_values = []
|
|
|
|
for word in read_input['count']:
|
|
|
|
if word not in vocabulary['count']:
|
|
|
|
read_input['count'][word]=0
|
|
|
|
readed_words_values.append(read_input['count'][word])
|
|
|
|
for ix in range(0,len(vocabulary['count'])+1):
|
|
|
|
weights.append(random.uniform(-0.001,0.001))
|
|
|
|
#max_iteration=len(vocabulary['count'])+1
|
|
|
|
max_iteration=1000
|
|
|
|
delta=1
|
|
|
|
while (delta>learning_precision and iteration<max_iteration):
|
|
|
|
d,y=random.choice(list(read_input['count'].items())) #d-word, y-value of
|
|
|
|
y_hat=weights[0]
|
|
|
|
i=0
|
|
|
|
for word_d in d:
|
|
|
|
if word_d in vocabulary['count'].keys():
|
|
|
|
#print(vocabulary['count'][d])
|
|
|
|
y_hat+=weights[vocabulary['count'][word_d]]*readed_words_values[i]
|
|
|
|
delta=abs(y_hat-y)*learning_rate
|
|
|
|
weights[0]=weights[0]-delta
|
|
|
|
i+=i
|
|
|
|
i=0
|
|
|
|
for word_w in d:
|
|
|
|
if word_w in vocabulary['count'].keys():
|
|
|
|
weights[vocabulary['count'][word_w]]-=readed_words_values[i]*delta
|
|
|
|
i+=1
|
|
|
|
#print(weights)
|
|
|
|
print(y_hat)
|
|
|
|
print(y)
|
|
|
|
loss=(y_hat-y)**2.0
|
|
|
|
#loss=(y_hat-y)*(y_hat-y)
|
|
|
|
loss_sum+=loss
|
|
|
|
if(iteration%1000==0):
|
|
|
|
print(loss_sum/1000)
|
|
|
|
iteration=0
|
|
|
|
loss_sum=0.0
|
|
|
|
iteration+=1
|
2020-04-02 18:29:06 +02:00
|
|
|
def main():
|
2020-04-04 19:55:07 +02:00
|
|
|
vocabulary = define_vocabulary('train/in.tsv')
|
2020-04-05 20:10:04 +02:00
|
|
|
readed_words=read_input('dev-0/in.tsv')
|
|
|
|
training(vocabulary,readed_words,'test.tsv')
|
|
|
|
|
|
|
|
|
|
|
|
#def cost_function(y_hat,y):
|
|
|
|
# loss=(y_hat-y)**2.0
|
|
|
|
# loss_sum+=loss
|
|
|
|
# if loss_counter%1000==0:
|
|
|
|
# print(loss_sum/1000)
|
|
|
|
# loss_counter=0
|
|
|
|
# loss_sum=0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#def main():
|
|
|
|
# --------------- initialization ---------------------------------
|
|
|
|
# vocabulary = define_vocabulary('train/in.tsv')
|
|
|
|
# readed_words=read_input('dev-0/in.tsv')
|
|
|
|
# i=1;
|
|
|
|
# weights=[]
|
|
|
|
# readed_words_values=[]
|
|
|
|
# rangeVocabulary=len(vocabulary['count'])+1
|
|
|
|
# for i in range(rangeVocabulary):
|
|
|
|
# weights.append(random.randrange(0,len(vocabulary['count'])+1))
|
|
|
|
# for word in readed_words['count']:
|
|
|
|
# if word not in vocabulary['count']:
|
|
|
|
# readed_words['count'][word]=0
|
|
|
|
# readed_words_values.append(readed_words['count'][word])
|
|
|
|
# precision=0.00001
|
|
|
|
# learning_rate=0.00001
|
|
|
|
# delta=1
|
|
|
|
# max_iterations=len(vocabulary['count'])+1
|
|
|
|
# current_iteration=0
|
|
|
|
# rangeReadedValues=len(readed_words['count'])+1
|
2020-04-04 19:55:07 +02:00
|
|
|
# --------------- prediction -------------------------------------
|
2020-04-05 20:10:04 +02:00
|
|
|
# while (delta>precision and current_iteration<max_iterations):
|
|
|
|
# y=random.choice(readed_words_values)
|
|
|
|
# y_hat=weights[0]
|
|
|
|
# i=0
|
|
|
|
# j=0
|
|
|
|
# for i in range(rangeReadedValues):
|
|
|
|
# y_hat+=weights[i]*y
|
|
|
|
# delta=abs(y_hat-y)*learning_rate
|
|
|
|
# weights[0]=weights[0]-delta
|
|
|
|
# for j in range(rangeVocabulary):
|
|
|
|
# weights[j]-=y*delta
|
|
|
|
# print(delta)
|
|
|
|
# current_iteration+=1
|
2020-04-02 20:01:33 +02:00
|
|
|
|
2020-04-02 18:29:06 +02:00
|
|
|
|
|
|
|
main()
|
|
|
|
|