2020-03-22 14:21:40 +01:00
|
|
|
from collections import defaultdict
|
|
|
|
import math
|
|
|
|
import pickle
|
2020-05-02 17:01:57 +02:00
|
|
|
import re
|
2020-03-22 14:21:40 +01:00
|
|
|
|
2020-03-28 20:40:28 +01:00
|
|
|
open_file=('test-A/out.tsv')
|
|
|
|
|
|
|
|
#---------------TRAIN START
|
|
|
|
|
|
|
|
#Prawdopodobienstwo wylosowania dokumentu
|
2020-03-22 14:21:40 +01:00
|
|
|
def calc_class_logprob(expected_path):
|
|
|
|
paranormal_classcount=0
|
|
|
|
skeptic_classcount=0
|
2020-03-28 20:40:28 +01:00
|
|
|
with open(expected_path,encoding='utf-8') as f:
|
2020-03-22 14:21:40 +01:00
|
|
|
for line in f:
|
|
|
|
if 'P' in line:
|
|
|
|
paranormal_classcount += 1
|
|
|
|
if 'S' in line:
|
|
|
|
skeptic_classcount += 1
|
|
|
|
|
|
|
|
paranormal_prob = paranormal_classcount / (paranormal_classcount + skeptic_classcount)
|
|
|
|
skeptic_prob = skeptic_classcount / (paranormal_classcount + skeptic_classcount)
|
|
|
|
|
|
|
|
return math.log(paranormal_prob), math.log(skeptic_prob)
|
|
|
|
|
|
|
|
|
|
|
|
def calc_word_count(in_path, expected_path):
|
|
|
|
word_counts = {'paranormal':defaultdict(int), 'skeptic': defaultdict(int)}
|
2020-03-28 20:40:28 +01:00
|
|
|
with open(in_path,encoding='utf-8') as in_file, open(expected_path,encoding='utf-8') as expected_file:
|
2020-03-22 14:21:40 +01:00
|
|
|
for line, exp in zip(in_file, expected_file):
|
|
|
|
class_ = exp.rstrip('\n').replace(' ','')
|
|
|
|
text, timestamp = line.rstrip('\n').split('\t')
|
2020-05-02 17:01:57 +02:00
|
|
|
text = re.sub(r'(\s+|\\n)', ' ', text)
|
|
|
|
text = re.sub(r'(https?:|www)\S+(\s+|$)', ' URL ', text)
|
2020-03-22 14:21:40 +01:00
|
|
|
tokens = text.lower().split(' ')
|
|
|
|
for token in tokens:
|
|
|
|
if class_ == 'P':
|
|
|
|
word_counts['paranormal'][token] += 1
|
|
|
|
elif class_ == 'S':
|
|
|
|
word_counts['skeptic'][token] += 1
|
|
|
|
return word_counts
|
|
|
|
|
|
|
|
def calc_word_logprobs(word_counts):
|
|
|
|
total_skeptic = sum(word_counts['skeptic'].values()) + len(word_counts['skeptic'].keys())
|
|
|
|
total_paranormal = sum(word_counts['paranormal'].values()) + len(word_counts['paranormal'].keys())
|
|
|
|
|
|
|
|
word_logprobs= {'paranormal': {}, 'skeptic': {}}
|
|
|
|
for class_ in word_counts.keys(): # sceptic paranormal
|
|
|
|
for token, tokens in word_counts[class_].items():
|
|
|
|
if class_ == 'skeptic':
|
|
|
|
word_prob = (tokens+1)/total_skeptic
|
|
|
|
else:
|
|
|
|
word_prob = (tokens+1)/total_paranormal
|
|
|
|
word_logprobs[class_][token] = math.log(word_prob)
|
|
|
|
return word_logprobs
|
|
|
|
|
2020-03-28 20:40:28 +01:00
|
|
|
#--------------- TRAIN END
|
2020-03-22 14:21:40 +01:00
|
|
|
|
|
|
|
def main():
|
2020-03-28 20:40:28 +01:00
|
|
|
paranomal_class_logprob, skeptic_class_logprob = calc_class_logprob("train/expected.tsv")
|
|
|
|
word_counts=calc_word_count("train/in.tsv","train/expected.tsv")
|
2020-03-22 14:21:40 +01:00
|
|
|
word_logprobs = calc_word_logprobs(word_counts)
|
|
|
|
pickle.dump([paranomal_class_logprob, skeptic_class_logprob, word_logprobs], open('naive_base_model.pkl','wb'))
|
|
|
|
|
|
|
|
main()
|