diff --git a/code_regression.py b/code_regression.py index 017da6b..3229122 100644 --- a/code_regression.py +++ b/code_regression.py @@ -6,80 +6,95 @@ import re from pip._vendor.msgpack.fallback import xrange import random -vocabulary=[] +vocabulary = [] + +file_to_save = open("test.tsv", "w", encoding='utf-8') + -file_to_save=open("test.tsv","w",encoding='utf-8') def define_vocabulary(file_to_learn_new_words): - word_counts={'count': defaultdict(int)} - with open(file_to_learn_new_words,encoding='utf-8') as in_file: + word_counts = {'count': defaultdict(int)} + with open(file_to_learn_new_words, encoding='utf-8') as in_file: for line in in_file: text, timestamp = line.rstrip('\n').split('\t') tokens = text.lower().split(' ') for token in tokens: - word_counts['count'][token]+=1 + word_counts['count'][token] += 1 return word_counts + def read_input(file_path): - read_word_counts={'count': defaultdict(int)} + read_word_counts = {'count': defaultdict(int)} with open(file_path, encoding='utf-8') as in_file: for line in in_file: text, timestamp = line.rstrip('\n').split('\t') tokens = text.lower().split(' ') for token in tokens: - read_word_counts['count'][token]+=1 + read_word_counts['count'][token] += 1 return read_word_counts -def training(vocabulary,read_input,expected): - learning_rate=0.00001 - learning_precision=0.0000001 - weights=[] - iteration=0 - loss_sum=0.0 - ix=1 + +def training(vocabulary, read_input, expected): + file_to_write = open(expected, 'w+', encoding='utf8') + learning_rate = 0.00001 + learning_precision = 0.0000001 + weights = [] + iteration = 0 + loss_sum = 0.0 + ix = 1 readed_words_values = [] for word in read_input['count']: if word not in vocabulary['count']: - read_input['count'][word]=0 + read_input['count'][word] = 0 readed_words_values.append(read_input['count'][word]) - for ix in range(0,len(vocabulary['count'])+1): - weights.append(random.uniform(-0.001,0.001)) - #max_iteration=len(vocabulary['count'])+1 - max_iteration=1000 - delta=1 - while (delta>learning_precision and iteration learning_precision and iteration < max_iteration: + d, y = random.choice(list(read_input['count'].items())) # d-word, y-value of + y_hat = weights[0] + i = 0 for word_d in d: if word_d in vocabulary['count'].keys(): - #print(vocabulary['count'][d]) - y_hat+=weights[vocabulary['count'][word_d]]*readed_words_values[i] - delta=abs(y_hat-y)*learning_rate - weights[0]=weights[0]-delta - i+=i - i=0 + # print(vocabulary['count'][d]) + y_hat += weights[vocabulary['count'][word_d]] * readed_words_values[i] + i += 1 + if y_hat > 0.0: + file_to_write.write('1\n') + else: + file_to_write.write('0\n') + i = 0 + delta = (y_hat - y) * learning_rate + weights[0] = weights[0] - delta for word_w in d: if word_w in vocabulary['count'].keys(): - weights[vocabulary['count'][word_w]]-=readed_words_values[i]*delta - i+=1 - #print(weights) + weights[vocabulary['count'][word_w]] -= readed_words_values[i] * delta + i += 1 + # print(weights) print(y_hat) print(y) - loss=(y_hat-y)**2.0 - #loss=(y_hat-y)*(y_hat-y) - loss_sum+=loss - if(iteration%1000==0): - print(loss_sum/1000) - iteration=0 - loss_sum=0.0 - iteration+=1 + loss = (y_hat - y) ** 2.0 + # loss=(y_hat-y)*(y_hat-y) + loss_sum += loss + if (iteration % 1000 == 0): + print(loss_sum / 1000) + iteration = 0 + loss_sum = 0.0 + iteration += 1 + file_to_write.close + return weights, vocabulary + + def main(): vocabulary = define_vocabulary('train/in.tsv') - readed_words=read_input('dev-0/in.tsv') - training(vocabulary,readed_words,'test.tsv') + readed_words = read_input('dev-0/in.tsv') + readed_words_test_a = read_input('test-A/in.tsv/in.tsv') + training(vocabulary, readed_words, 'test.tsv') + training(vocabulary,readed_words_test_a, 'test_a.tsv') -#def cost_function(y_hat,y): +# def cost_function(y_hat,y): # loss=(y_hat-y)**2.0 # loss_sum+=loss # if loss_counter%1000==0: @@ -88,9 +103,8 @@ def main(): # loss_sum=0.0 - -#def main(): - # --------------- initialization --------------------------------- +# def main(): +# --------------- initialization --------------------------------- # vocabulary = define_vocabulary('train/in.tsv') # readed_words=read_input('dev-0/in.tsv') # i=1; @@ -109,7 +123,7 @@ def main(): # max_iterations=len(vocabulary['count'])+1 # current_iteration=0 # rangeReadedValues=len(readed_words['count'])+1 - # --------------- prediction ------------------------------------- +# --------------- prediction ------------------------------------- # while (delta>precision and current_iteration