laptop commit linear regression

This commit is contained in:
Bartosz Ogonowski 2020-05-02 21:24:44 +02:00
parent dfa4304d9c
commit 5df01c9b41
3 changed files with 2004 additions and 2154 deletions

View File

@ -53,7 +53,7 @@ def read_words(input_path):
return vocabulary return vocabulary
def train(vocabulary,input_train,expected_train): def train(vocabulary,input_train,expected_train):
learning_rate=0.0001 learning_rate=0.000001
#learning_precision=0.0000001 #learning_precision=0.0000001
words_vocabulary={} words_vocabulary={}
with open(input_train,encoding='utf-8') as input_file, open(expected_train,encoding='utf-8') as expected_file: with open(input_train,encoding='utf-8') as input_file, open(expected_train,encoding='utf-8') as expected_file:
@ -65,7 +65,7 @@ def train(vocabulary,input_train,expected_train):
iteration=0 iteration=0
loss_sum=0.0 loss_sum=0.0
error=10.0 error=10.0
max_iteration=len(vocabulary) max_iteration=len(vocabulary) + 1000
for i in vocabulary['count'].keys(): for i in vocabulary['count'].keys():
weights[i]=random.uniform(-0.01,0.01) weights[i]=random.uniform(-0.01,0.01)
# delta>learning_precision and # delta>learning_precision and
@ -121,153 +121,3 @@ main()
# from collections import defaultdict
# import math
# import pickle
# import re
#
# from pip._vendor.msgpack.fallback import xrange
# import random
#
# vocabulary = []
#
# file_to_save = open("test.tsv", "w", encoding='utf-8')
#
#
# def define_vocabulary(file_to_learn_new_words):
# word_counts = {'count': defaultdict(int)}
# with open(file_to_learn_new_words, encoding='utf-8') as in_file:
# for line in in_file:
# text, timestamp = line.rstrip('\n').split('\t')
# tokens = text.lower().split(' ')
# for token in tokens:
# word_counts['count'][token] += 1
# return word_counts
#
#
# def read_input(file_path):
# read_word_counts = {'count': defaultdict(int)}
# with open(file_path, encoding='utf-8') as in_file:
# for line in in_file:
# text, timestamp = line.rstrip('\n').split('\t')
# tokens = text.lower().split(' ')
# for token in tokens:
# read_word_counts['count'][token] += 1
# return read_word_counts
#
#
# def training(vocabulary, read_input, expected):
# file_to_write = open(expected, 'w+', encoding='utf8')
# file_to_write2 = open('out_y_hat.tsv', 'w+', encoding='utf8')
# learning_rate = 0.00001
# learning_precision = 0.0001
# weights = []
# iteration = 0
# loss_sum = 0.0
# ix = 1
# readed_words_values = []
# for word in read_input['count']:
# if word not in vocabulary['count']:
# read_input['count'][word] = 0
# readed_words_values.append(read_input['count'][word])
# for ix in range(0, len(vocabulary['count']) + 1):
# weights.append(random.uniform(-0.001, 0.001))
# # max_iteration=len(vocabulary['count'])+1
# max_iteration = 10000
# delta = 1
# while delta>learning_precision and iteration<max_iteration:
# d, y = random.choice(list(read_input['count'].items())) # d-word, y-value of
# y_hat = weights[0]
# i = 0
# for word_d in d:
# if word_d in vocabulary['count'].keys():
# # print(vocabulary['count'][d])
# y_hat += weights[vocabulary['count'][word_d]] * readed_words_values[i]
# i += 1
# print(f'Y_hat: {y_hat}')
# file_to_write2.write(f'Y_hat: {y_hat}\n')
# if y_hat > 0.5:
# file_to_write.write('1\n')
# else:
# file_to_write.write('0\n')
# i = 0
# delta = (y_hat - y) * learning_rate
# weights[0] = weights[0] - delta
# for word_w in d:
# if word_w in vocabulary['count'].keys():
# weights[vocabulary['count'][word_w]] -= readed_words_values[i] * delta
# i += 1
# # print(weights)
# #print(f'Y: {y}')
# loss = (y_hat - y) ** 2.0
# # loss=(y_hat-y)*(y_hat-y)
# loss_sum += loss
# if (iteration % 1000 == 0):
# #print(loss_sum / 1000)
# iteration = 0
# loss_sum = 0.0
# iteration += 1
# file_to_write.close
#
# def main():
# vocabulary = define_vocabulary('train/in.tsv')
# readed_words = read_input('dev-0/in.tsv')
# readed_words_test_a = read_input('test-A/in.tsv/in.tsv')
# training(vocabulary, readed_words, 'dev-0/out.tsv')
# training(vocabulary, readed_words_test_a, 'test-A/out.tsv')
#
#
# # def cost_function(y_hat,y):
# # loss=(y_hat-y)**2.0
# # loss_sum+=loss
# # if loss_counter%1000==0:
# # print(loss_sum/1000)
# # loss_counter=0
# # loss_sum=0.0
#
#
# # def main():
# # --------------- initialization ---------------------------------
# # vocabulary = define_vocabulary('train/in.tsv')
# # readed_words=read_input('dev-0/in.tsv')
# # i=1;
# # weights=[]
# # readed_words_values=[]
# # rangeVocabulary=len(vocabulary['count'])+1
# # for i in range(rangeVocabulary):
# # weights.append(random.randrange(0,len(vocabulary['count'])+1))
# # for word in readed_words['count']:
# # if word not in vocabulary['count']:
# # readed_words['count'][word]=0
# # readed_words_values.append(readed_words['count'][word])
# # precision=0.00001
# # learning_rate=0.00001
# # delta=1
# # max_iterations=len(vocabulary['count'])+1
# # current_iteration=0
# # rangeReadedValues=len(readed_words['count'])+1
# # --------------- prediction -------------------------------------
# # while (delta>precision and current_iteration<max_iterations):
# # y=random.choice(readed_words_values)
# # y_hat=weights[0]
# # i=0
# # j=0
# # for i in range(rangeReadedValues):
# # y_hat+=weights[i]*y
# # delta=abs(y_hat-y)*learning_rate
# # weights[0]=weights[0]-delta
# # for j in range(rangeVocabulary):
# # weights[j]-=y*delta
# # print(delta)
# # current_iteration+=1
#
#
# main()

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff