laptop commit linear regression
This commit is contained in:
parent
dfa4304d9c
commit
5df01c9b41
@ -53,7 +53,7 @@ def read_words(input_path):
|
|||||||
return vocabulary
|
return vocabulary
|
||||||
|
|
||||||
def train(vocabulary,input_train,expected_train):
|
def train(vocabulary,input_train,expected_train):
|
||||||
learning_rate=0.0001
|
learning_rate=0.000001
|
||||||
#learning_precision=0.0000001
|
#learning_precision=0.0000001
|
||||||
words_vocabulary={}
|
words_vocabulary={}
|
||||||
with open(input_train,encoding='utf-8') as input_file, open(expected_train,encoding='utf-8') as expected_file:
|
with open(input_train,encoding='utf-8') as input_file, open(expected_train,encoding='utf-8') as expected_file:
|
||||||
@ -65,7 +65,7 @@ def train(vocabulary,input_train,expected_train):
|
|||||||
iteration=0
|
iteration=0
|
||||||
loss_sum=0.0
|
loss_sum=0.0
|
||||||
error=10.0
|
error=10.0
|
||||||
max_iteration=len(vocabulary)
|
max_iteration=len(vocabulary) + 1000
|
||||||
for i in vocabulary['count'].keys():
|
for i in vocabulary['count'].keys():
|
||||||
weights[i]=random.uniform(-0.01,0.01)
|
weights[i]=random.uniform(-0.01,0.01)
|
||||||
# delta>learning_precision and
|
# delta>learning_precision and
|
||||||
@ -121,153 +121,3 @@ main()
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# from collections import defaultdict
|
|
||||||
# import math
|
|
||||||
# import pickle
|
|
||||||
# import re
|
|
||||||
#
|
|
||||||
# from pip._vendor.msgpack.fallback import xrange
|
|
||||||
# import random
|
|
||||||
#
|
|
||||||
# vocabulary = []
|
|
||||||
#
|
|
||||||
# file_to_save = open("test.tsv", "w", encoding='utf-8')
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# def define_vocabulary(file_to_learn_new_words):
|
|
||||||
# word_counts = {'count': defaultdict(int)}
|
|
||||||
# with open(file_to_learn_new_words, encoding='utf-8') as in_file:
|
|
||||||
# for line in in_file:
|
|
||||||
# text, timestamp = line.rstrip('\n').split('\t')
|
|
||||||
# tokens = text.lower().split(' ')
|
|
||||||
# for token in tokens:
|
|
||||||
# word_counts['count'][token] += 1
|
|
||||||
# return word_counts
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# def read_input(file_path):
|
|
||||||
# read_word_counts = {'count': defaultdict(int)}
|
|
||||||
# with open(file_path, encoding='utf-8') as in_file:
|
|
||||||
# for line in in_file:
|
|
||||||
# text, timestamp = line.rstrip('\n').split('\t')
|
|
||||||
# tokens = text.lower().split(' ')
|
|
||||||
# for token in tokens:
|
|
||||||
# read_word_counts['count'][token] += 1
|
|
||||||
# return read_word_counts
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# def training(vocabulary, read_input, expected):
|
|
||||||
# file_to_write = open(expected, 'w+', encoding='utf8')
|
|
||||||
# file_to_write2 = open('out_y_hat.tsv', 'w+', encoding='utf8')
|
|
||||||
# learning_rate = 0.00001
|
|
||||||
# learning_precision = 0.0001
|
|
||||||
# weights = []
|
|
||||||
# iteration = 0
|
|
||||||
# loss_sum = 0.0
|
|
||||||
# ix = 1
|
|
||||||
# readed_words_values = []
|
|
||||||
# for word in read_input['count']:
|
|
||||||
# if word not in vocabulary['count']:
|
|
||||||
# read_input['count'][word] = 0
|
|
||||||
# readed_words_values.append(read_input['count'][word])
|
|
||||||
# for ix in range(0, len(vocabulary['count']) + 1):
|
|
||||||
# weights.append(random.uniform(-0.001, 0.001))
|
|
||||||
# # max_iteration=len(vocabulary['count'])+1
|
|
||||||
# max_iteration = 10000
|
|
||||||
# delta = 1
|
|
||||||
# while delta>learning_precision and iteration<max_iteration:
|
|
||||||
# d, y = random.choice(list(read_input['count'].items())) # d-word, y-value of
|
|
||||||
# y_hat = weights[0]
|
|
||||||
# i = 0
|
|
||||||
# for word_d in d:
|
|
||||||
# if word_d in vocabulary['count'].keys():
|
|
||||||
# # print(vocabulary['count'][d])
|
|
||||||
# y_hat += weights[vocabulary['count'][word_d]] * readed_words_values[i]
|
|
||||||
# i += 1
|
|
||||||
# print(f'Y_hat: {y_hat}')
|
|
||||||
# file_to_write2.write(f'Y_hat: {y_hat}\n')
|
|
||||||
# if y_hat > 0.5:
|
|
||||||
# file_to_write.write('1\n')
|
|
||||||
# else:
|
|
||||||
# file_to_write.write('0\n')
|
|
||||||
# i = 0
|
|
||||||
# delta = (y_hat - y) * learning_rate
|
|
||||||
# weights[0] = weights[0] - delta
|
|
||||||
# for word_w in d:
|
|
||||||
# if word_w in vocabulary['count'].keys():
|
|
||||||
# weights[vocabulary['count'][word_w]] -= readed_words_values[i] * delta
|
|
||||||
# i += 1
|
|
||||||
# # print(weights)
|
|
||||||
# #print(f'Y: {y}')
|
|
||||||
# loss = (y_hat - y) ** 2.0
|
|
||||||
# # loss=(y_hat-y)*(y_hat-y)
|
|
||||||
# loss_sum += loss
|
|
||||||
# if (iteration % 1000 == 0):
|
|
||||||
# #print(loss_sum / 1000)
|
|
||||||
# iteration = 0
|
|
||||||
# loss_sum = 0.0
|
|
||||||
# iteration += 1
|
|
||||||
# file_to_write.close
|
|
||||||
#
|
|
||||||
# def main():
|
|
||||||
# vocabulary = define_vocabulary('train/in.tsv')
|
|
||||||
# readed_words = read_input('dev-0/in.tsv')
|
|
||||||
# readed_words_test_a = read_input('test-A/in.tsv/in.tsv')
|
|
||||||
# training(vocabulary, readed_words, 'dev-0/out.tsv')
|
|
||||||
# training(vocabulary, readed_words_test_a, 'test-A/out.tsv')
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# # def cost_function(y_hat,y):
|
|
||||||
# # loss=(y_hat-y)**2.0
|
|
||||||
# # loss_sum+=loss
|
|
||||||
# # if loss_counter%1000==0:
|
|
||||||
# # print(loss_sum/1000)
|
|
||||||
# # loss_counter=0
|
|
||||||
# # loss_sum=0.0
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# # def main():
|
|
||||||
# # --------------- initialization ---------------------------------
|
|
||||||
# # vocabulary = define_vocabulary('train/in.tsv')
|
|
||||||
# # readed_words=read_input('dev-0/in.tsv')
|
|
||||||
# # i=1;
|
|
||||||
# # weights=[]
|
|
||||||
# # readed_words_values=[]
|
|
||||||
# # rangeVocabulary=len(vocabulary['count'])+1
|
|
||||||
# # for i in range(rangeVocabulary):
|
|
||||||
# # weights.append(random.randrange(0,len(vocabulary['count'])+1))
|
|
||||||
# # for word in readed_words['count']:
|
|
||||||
# # if word not in vocabulary['count']:
|
|
||||||
# # readed_words['count'][word]=0
|
|
||||||
# # readed_words_values.append(readed_words['count'][word])
|
|
||||||
# # precision=0.00001
|
|
||||||
# # learning_rate=0.00001
|
|
||||||
# # delta=1
|
|
||||||
# # max_iterations=len(vocabulary['count'])+1
|
|
||||||
# # current_iteration=0
|
|
||||||
# # rangeReadedValues=len(readed_words['count'])+1
|
|
||||||
# # --------------- prediction -------------------------------------
|
|
||||||
# # while (delta>precision and current_iteration<max_iterations):
|
|
||||||
# # y=random.choice(readed_words_values)
|
|
||||||
# # y_hat=weights[0]
|
|
||||||
# # i=0
|
|
||||||
# # j=0
|
|
||||||
# # for i in range(rangeReadedValues):
|
|
||||||
# # y_hat+=weights[i]*y
|
|
||||||
# # delta=abs(y_hat-y)*learning_rate
|
|
||||||
# # weights[0]=weights[0]-delta
|
|
||||||
# # for j in range(rangeVocabulary):
|
|
||||||
# # weights[j]-=y*delta
|
|
||||||
# # print(delta)
|
|
||||||
# # current_iteration+=1
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# main()
|
|
||||||
|
2024
dev-0/out.tsv
2024
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
1980
test-A/out.tsv
1980
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user