Rewrite linear regression

This commit is contained in:
Bartusiak 2020-04-09 00:23:08 +02:00
parent fa4c673309
commit 8d2a814d44
4 changed files with 10678 additions and 10564 deletions

View File

@ -1,15 +1,6 @@
from collections import defaultdict
import math
import pickle
import re
from pip._vendor.msgpack.fallback import xrange
import random import random
import re
vocabulary = [] from _collections import defaultdict
file_to_save = open("test.tsv", "w", encoding='utf-8')
def define_vocabulary(file_to_learn_new_words): def define_vocabulary(file_to_learn_new_words):
word_counts = {'count': defaultdict(int)} word_counts = {'count': defaultdict(int)}
@ -19,124 +10,257 @@ def define_vocabulary(file_to_learn_new_words):
tokens = text.lower().split(' ') tokens = text.lower().split(' ')
for token in tokens: for token in tokens:
word_counts['count'][token] += 1 word_counts['count'][token] += 1
in_file.close()
return word_counts return word_counts
def tokenize_list(string_input):
words=[]
string=string_input.replace('\\n',' ')
text=re.sub(r'\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*', '', string)
string=''
for word in text:
string+=word
words=re.split(';+|,+|\*+|\n+| +|\_+|\%+|\t+|\[+|\]+|\.+|\(+|\)+|\++|\\+|\/+|[0-9]+|\#+|\'+|\"+|\-+|\=+|\&+|\:+|\?+|\!+|\^+|\·+',string)
regex=re.compile(r'http|^[a-zA-Z]$|org')
filtered_values=[
word
for word in words if not regex.match(word)
]
filtered_values[:] = (
value.lower()
for value in filtered_values if len(value)!=0
)
return filtered_values
def read_input(file_path): def read_words(input_path):
read_word_counts = {'count': defaultdict(int)} vocabulary = {'count':defaultdict(int)}
with open(file_path, encoding='utf-8') as in_file: index=0
for line in in_file: with open(input_path,encoding='utf-8') as infile:
text, timestamp = line.rstrip('\n').split('\t') for line in infile:
tokens = text.lower().split(' ') index+=1
tokens = tokenize_list(line)
for token in tokens: for token in tokens:
read_word_counts['count'][token] += 1 if token not in vocabulary:
return read_word_counts vocabulary['vocabulary'][token]+=1
infile.close()
return vocabulary
def train(vocabulary,input_train,expected_train):
def training(vocabulary, read_input, expected): learning_rate=0.0001
file_to_write = open(expected, 'w+', encoding='utf8') learning_precision=0.00000001
file_to_write2 = open('out_y_hat.tsv', 'w+', encoding='utf8') words_vocabulary={}
learning_rate = 0.00001 with open(input_train,encoding='utf-8') as input_file, open(expected_train,encoding='utf-8') as expected_file:
learning_precision = 0.0001 for line, exp in zip(input_file,expected_file):
weights = [] words_vocabulary[line]=int(exp)
weights={}
weight={}
delta=1
iteration=0 iteration=0
loss_sum=0.0 loss_sum=0.0
ix = 1 error=10.0
readed_words_values = [] max_iteration=len(vocabulary)
for word in read_input['count']: for i in vocabulary['count'].keys():
if word not in vocabulary['count']: weights[i]=random.uniform(-0.01,0.01)
read_input['count'][word] = 0
readed_words_values.append(read_input['count'][word])
for ix in range(0, len(vocabulary['count']) + 1):
weights.append(random.uniform(-0.001, 0.001))
# max_iteration=len(vocabulary['count'])+1
max_iteration = 10000
delta = 1
while delta>learning_precision and iteration<max_iteration: while delta>learning_precision and iteration<max_iteration:
d, y = random.choice(list(read_input['count'].items())) # d-word, y-value of d,y = random.choice(list(words_vocabulary.items()))
y_hat = weights[0] y_hat=0
i = 0 tokens=tokenize_list(d)
for word_d in d: for token in tokens:
if word_d in vocabulary['count'].keys(): if token in vocabulary['count'].keys():
# print(vocabulary['count'][d]) y_hat += weights[token] * tokens.count(token)
y_hat += weights[vocabulary['count'][word_d]] * readed_words_values[i]
i += 1
print(f'Y_hat: {y_hat}')
file_to_write2.write(f'Y_hat: {y_hat}\n')
if y_hat > 0.5:
file_to_write.write('1\n')
else:
file_to_write.write('0\n')
i = 0
delta=(y_hat-y) * learning_rate delta=(y_hat-y) * learning_rate
weights[0] = weights[0] - delta for word in tokens:
for word_w in d: if word in words_vocabulary:
if word_w in vocabulary['count'].keys(): weights[word] -= (tokens.count(word)) * delta
weights[vocabulary['count'][word_w]] -= readed_words_values[i] * delta
i += 1
# print(weights)
#print(f'Y: {y}')
loss = (y_hat - y)**2.0 loss = (y_hat - y)**2.0
# loss=(y_hat-y)*(y_hat-y)
loss_sum += loss loss_sum += loss
if (iteration % 1000 == 0): if iteration%1000 == 0:
#print(loss_sum / 1000) if (error>(loss_sum/1000)):
iteration = 0 weight=weights
error=loss_sum/1000
loss_sum=0.0 loss_sum=0.0
iteration += 1 iteration += 1
file_to_write.close input_file.close()
expected_file.close()
return weight, vocabulary
def prediction(input,output,weights,vocabulary):
with open(input,encoding='utf-8') as input_file, open(output,'w+',encoding='utf-8') as output:
for line in input_file:
y_hat=0
tokens=tokenize_list(line)
for token in tokens:
if token in vocabulary['count'].keys():
y_hat += weights[token] * (token.count(token))
if y_hat>0.0:
output.write('1\n')
else:
output.write('0\n')
output.close()
input_file.close()
def main(): def main():
vocabulary = define_vocabulary('train/in.tsv') vocabulary=define_vocabulary('train/in.tsv');
readed_words = read_input('dev-0/in.tsv') weights, words = train(vocabulary,'train/in.tsv','train/expected.tsv')
readed_words_test_a = read_input('test-A/in.tsv/in.tsv') prediction('dev-0/in.tsv','dev-0/out.tsv',weights,words)
training(vocabulary, readed_words, 'dev-0/out.tsv') prediction('test-A/in.tsv/in.tsv','test-A/out.tsv',weights,words)
training(vocabulary, readed_words_test_a, 'test-A/out.tsv')
# def cost_function(y_hat,y):
# loss=(y_hat-y)**2.0
# loss_sum+=loss
# if loss_counter%1000==0:
# print(loss_sum/1000)
# loss_counter=0
# loss_sum=0.0
# def main():
# --------------- initialization ---------------------------------
# vocabulary = define_vocabulary('train/in.tsv')
# readed_words=read_input('dev-0/in.tsv')
# i=1;
# weights=[]
# readed_words_values=[]
# rangeVocabulary=len(vocabulary['count'])+1
# for i in range(rangeVocabulary):
# weights.append(random.randrange(0,len(vocabulary['count'])+1))
# for word in readed_words['count']:
# if word not in vocabulary['count']:
# readed_words['count'][word]=0
# readed_words_values.append(readed_words['count'][word])
# precision=0.00001
# learning_rate=0.00001
# delta=1
# max_iterations=len(vocabulary['count'])+1
# current_iteration=0
# rangeReadedValues=len(readed_words['count'])+1
# --------------- prediction -------------------------------------
# while (delta>precision and current_iteration<max_iterations):
# y=random.choice(readed_words_values)
# y_hat=weights[0]
# i=0
# j=0
# for i in range(rangeReadedValues):
# y_hat+=weights[i]*y
# delta=abs(y_hat-y)*learning_rate
# weights[0]=weights[0]-delta
# for j in range(rangeVocabulary):
# weights[j]-=y*delta
# print(delta)
# current_iteration+=1
main() main()
# from collections import defaultdict
# import math
# import pickle
# import re
#
# from pip._vendor.msgpack.fallback import xrange
# import random
#
# vocabulary = []
#
# file_to_save = open("test.tsv", "w", encoding='utf-8')
#
#
# def define_vocabulary(file_to_learn_new_words):
# word_counts = {'count': defaultdict(int)}
# with open(file_to_learn_new_words, encoding='utf-8') as in_file:
# for line in in_file:
# text, timestamp = line.rstrip('\n').split('\t')
# tokens = text.lower().split(' ')
# for token in tokens:
# word_counts['count'][token] += 1
# return word_counts
#
#
# def read_input(file_path):
# read_word_counts = {'count': defaultdict(int)}
# with open(file_path, encoding='utf-8') as in_file:
# for line in in_file:
# text, timestamp = line.rstrip('\n').split('\t')
# tokens = text.lower().split(' ')
# for token in tokens:
# read_word_counts['count'][token] += 1
# return read_word_counts
#
#
# def training(vocabulary, read_input, expected):
# file_to_write = open(expected, 'w+', encoding='utf8')
# file_to_write2 = open('out_y_hat.tsv', 'w+', encoding='utf8')
# learning_rate = 0.00001
# learning_precision = 0.0001
# weights = []
# iteration = 0
# loss_sum = 0.0
# ix = 1
# readed_words_values = []
# for word in read_input['count']:
# if word not in vocabulary['count']:
# read_input['count'][word] = 0
# readed_words_values.append(read_input['count'][word])
# for ix in range(0, len(vocabulary['count']) + 1):
# weights.append(random.uniform(-0.001, 0.001))
# # max_iteration=len(vocabulary['count'])+1
# max_iteration = 10000
# delta = 1
# while delta>learning_precision and iteration<max_iteration:
# d, y = random.choice(list(read_input['count'].items())) # d-word, y-value of
# y_hat = weights[0]
# i = 0
# for word_d in d:
# if word_d in vocabulary['count'].keys():
# # print(vocabulary['count'][d])
# y_hat += weights[vocabulary['count'][word_d]] * readed_words_values[i]
# i += 1
# print(f'Y_hat: {y_hat}')
# file_to_write2.write(f'Y_hat: {y_hat}\n')
# if y_hat > 0.5:
# file_to_write.write('1\n')
# else:
# file_to_write.write('0\n')
# i = 0
# delta = (y_hat - y) * learning_rate
# weights[0] = weights[0] - delta
# for word_w in d:
# if word_w in vocabulary['count'].keys():
# weights[vocabulary['count'][word_w]] -= readed_words_values[i] * delta
# i += 1
# # print(weights)
# #print(f'Y: {y}')
# loss = (y_hat - y) ** 2.0
# # loss=(y_hat-y)*(y_hat-y)
# loss_sum += loss
# if (iteration % 1000 == 0):
# #print(loss_sum / 1000)
# iteration = 0
# loss_sum = 0.0
# iteration += 1
# file_to_write.close
#
# def main():
# vocabulary = define_vocabulary('train/in.tsv')
# readed_words = read_input('dev-0/in.tsv')
# readed_words_test_a = read_input('test-A/in.tsv/in.tsv')
# training(vocabulary, readed_words, 'dev-0/out.tsv')
# training(vocabulary, readed_words_test_a, 'test-A/out.tsv')
#
#
# # def cost_function(y_hat,y):
# # loss=(y_hat-y)**2.0
# # loss_sum+=loss
# # if loss_counter%1000==0:
# # print(loss_sum/1000)
# # loss_counter=0
# # loss_sum=0.0
#
#
# # def main():
# # --------------- initialization ---------------------------------
# # vocabulary = define_vocabulary('train/in.tsv')
# # readed_words=read_input('dev-0/in.tsv')
# # i=1;
# # weights=[]
# # readed_words_values=[]
# # rangeVocabulary=len(vocabulary['count'])+1
# # for i in range(rangeVocabulary):
# # weights.append(random.randrange(0,len(vocabulary['count'])+1))
# # for word in readed_words['count']:
# # if word not in vocabulary['count']:
# # readed_words['count'][word]=0
# # readed_words_values.append(readed_words['count'][word])
# # precision=0.00001
# # learning_rate=0.00001
# # delta=1
# # max_iterations=len(vocabulary['count'])+1
# # current_iteration=0
# # rangeReadedValues=len(readed_words['count'])+1
# # --------------- prediction -------------------------------------
# # while (delta>precision and current_iteration<max_iterations):
# # y=random.choice(readed_words_values)
# # y_hat=weights[0]
# # i=0
# # j=0
# # for i in range(rangeReadedValues):
# # y_hat+=weights[i]*y
# # delta=abs(y_hat-y)*learning_rate
# # weights[0]=weights[0]-delta
# # for j in range(rangeVocabulary):
# # weights[j]-=y*delta
# # print(delta)
# # current_iteration+=1
#
#
# main()

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,10 +0,0 @@
1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1