New branch

This commit is contained in:
Bartusiak 2020-04-02 12:44:08 +02:00
parent caca661287
commit db710a4df8
2 changed files with 0 additions and 95 deletions

57
code.py
View File

@ -2,61 +2,4 @@ from collections import defaultdict
import math
import pickle
open_file=('test-A/out.tsv')
#---------------TRAIN START
#Prawdopodobienstwo wylosowania dokumentu
def calc_class_logprob(expected_path):
paranormal_classcount=0
skeptic_classcount=0
with open(expected_path,encoding='utf-8') as f:
for line in f:
if 'P' in line:
paranormal_classcount += 1
if 'S' in line:
skeptic_classcount += 1
paranormal_prob = paranormal_classcount / (paranormal_classcount + skeptic_classcount)
skeptic_prob = skeptic_classcount / (paranormal_classcount + skeptic_classcount)
return math.log(paranormal_prob), math.log(skeptic_prob)
def calc_word_count(in_path, expected_path):
word_counts = {'paranormal':defaultdict(int), 'skeptic': defaultdict(int)}
with open(in_path,encoding='utf-8') as in_file, open(expected_path,encoding='utf-8') as expected_file:
for line, exp in zip(in_file, expected_file):
class_ = exp.rstrip('\n').replace(' ','')
text, timestamp = line.rstrip('\n').split('\t')
tokens = text.lower().split(' ')
for token in tokens:
if class_ == 'P':
word_counts['paranormal'][token] += 1
elif class_ == 'S':
word_counts['skeptic'][token] += 1
return word_counts
def calc_word_logprobs(word_counts):
total_skeptic = sum(word_counts['skeptic'].values()) + len(word_counts['skeptic'].keys())
total_paranormal = sum(word_counts['paranormal'].values()) + len(word_counts['paranormal'].keys())
word_logprobs= {'paranormal': {}, 'skeptic': {}}
for class_ in word_counts.keys(): # sceptic paranormal
for token, tokens in word_counts[class_].items():
if class_ == 'skeptic':
word_prob = (tokens+1)/total_skeptic
else:
word_prob = (tokens+1)/total_paranormal
word_logprobs[class_][token] = math.log(word_prob)
return word_logprobs
#--------------- TRAIN END
def main():
paranomal_class_logprob, skeptic_class_logprob = calc_class_logprob("train/expected.tsv")
word_counts=calc_word_count("train/in.tsv","train/expected.tsv")
word_logprobs = calc_word_logprobs(word_counts)
pickle.dump([paranomal_class_logprob, skeptic_class_logprob, word_logprobs], open('naive_base_model.pkl','wb'))
main()

View File

@ -1,38 +0,0 @@
from collections import defaultdict
import math
import pickle
open_file = open('naive_base_model.pkl', 'rb')
pickle_loaded = pickle.load(open_file)
paranomal_class_logprob, skeptic_class_logprob, word_logprobs = pickle_loaded
#pickle_loaded=pickle.load(open_file)
#paranomal_class_logprob, skeptic_class_logprob, word_logprobs = pickle_loaded
#Niektórych słów nie bezie w zbiorze treningowym dev-0 i dev-A
def prediction(input,output):
output_file = open(output,'w')
with open(input,encoding='utf-8') as in_file:
for line in in_file:
temp_paranormal_logprob = paranomal_class_logprob
temp_skeptic_logprob = skeptic_class_logprob
text, timestamp = line.rstrip('\n').split('\t')
tokens = text.lower().split(' ')
for token in tokens:
if token not in word_logprobs['paranormal']:
word_logprobs['paranormal'][token] = 0
if token not in word_logprobs['skeptic']:
word_logprobs['skeptic'][token] = 0
temp_paranormal_logprob += paranomal_class_logprob + word_logprobs['paranormal'][token]
temp_skeptic_logprob += skeptic_class_logprob + word_logprobs['skeptic'][token]
if temp_paranormal_logprob > temp_skeptic_logprob:
output_file.write('P\n')
else:
output_file.write('S\n')
def main():
prediction('dev-0/in.tsv','dev-0/out.tsv')
prediction('test-A/in.tsv/in.tsv','test-A/out.tsv')
main()