aitech-eks-pub/cw/00_Informacje_na_temat_przedmiotu.ipynb

89 lines
3.0 KiB
Plaintext
Raw Normal View History

2021-03-09 12:27:15 +01:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Informacje ogólne"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Kontakt z prowadzącym\n",
"\n",
"prowadzący: mgr inż. Jakub Pokrywka\n",
"\n",
"Najlepiej kontaktowąć się ze mną przez MS TEAMS na grupie kanału (ogólne sprawy) lub w prywatnych wiadomościach. Odpisuję co 2-3 dni. Można też umówić się na zdzwonko w godzinach dyżuru (wt 12.00-13.00) lub umówić się w innym terminie.\n",
"\n",
"\n",
"## Literatura\n",
"Polecana literatura do przedmiotu:\n",
"\n",
"\n",
"- https://www.manning.com/books/relevant-search#toc (darmowa) Polecam chociaż przejrzeć.\n",
"- Marie-Francine Moens. 2006. Information Extraction: Algorithms and Prospects in a Retrieval Context. Springer. (polecam mniej, jest trochę nieaktualna)\n",
"- Alex Graves. 2012. Supervised sequence labelling. Studies in Computational Intelligence, vol 385. Springer. Berlin, Heidelberg. \n",
"\n",
"- Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. North American Association for Computational Linguistics (NAACL). \n",
"\n",
"- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. 2020. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research vol 21, number 140, pages 1-67. \n",
"\n",
"- Flip Graliński, Tomasz Stanisławek, Anna Wróblewska, Dawid Lipiński, Agnieszka Kaliska, Paulina Rosalska, Bartosz Topolski, Przemysław Biecek. 2020. Kleister: A novel task for information extraction involving long documents with complex layout. URL https://arxiv.org/abs/2003.02356 \n",
"\n",
"- Łukasz Garncarek, Rafał Powalski, Tomasz Stanisławek, Bartosz Topolski, Piotr Halama, Filip Graliński. 2020. LAMBERT: Layout-Aware (Language) Modeling using BERT. URL https://arxiv.org/pdf/2002.08087 \n",
"\n",
"## Zaliczenie\n",
"\n",
"\n",
"\n",
2021-03-13 11:30:12 +01:00
"Do zdobycia będzie conajmniej 600 punktów.\n",
2021-03-09 12:27:15 +01:00
"\n",
"Ocena:\n",
"\n",
"- -299 — 2\n",
"\n",
"- 300-349 — 3\n",
"\n",
"- 350-399 — 3+\n",
"\n",
"- 400-449 — 4\n",
"\n",
"- 450—499 — 4+\n",
"\n",
"- 500- — 5\n",
"\n"
]
2021-03-13 11:30:12 +01:00
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
2021-03-09 12:27:15 +01:00
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}