s430705
This commit is contained in:
parent
add921bdc7
commit
3d96a41f40
1
config.txt
Normal file
1
config.txt
Normal file
@ -0,0 +1 @@
|
|||||||
|
--metric PerplexityHashed --precision 2 --in-header in-header.tsv --out-header out-header.tsv
|
10519
dev-0/expected.tsv
Normal file
10519
dev-0/expected.tsv
Normal file
File diff suppressed because it is too large
Load Diff
BIN
dev-0/in.tsv.xz
Normal file
BIN
dev-0/in.tsv.xz
Normal file
Binary file not shown.
7414
dev-0/out.tsv
Normal file
7414
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
1
in-header.tsv
Normal file
1
in-header.tsv
Normal file
@ -0,0 +1 @@
|
|||||||
|
FileId Year LeftContext RightContext
|
|
1
out-header.tsv
Normal file
1
out-header.tsv
Normal file
@ -0,0 +1 @@
|
|||||||
|
Word
|
|
129
run.py
Normal file
129
run.py
Normal file
@ -0,0 +1,129 @@
|
|||||||
|
import string
|
||||||
|
import unicodedata
|
||||||
|
|
||||||
|
from nltk.tokenize import word_tokenize
|
||||||
|
from nltk import trigrams
|
||||||
|
from collections import defaultdict, Counter
|
||||||
|
import pandas as pd
|
||||||
|
import csv
|
||||||
|
import regex as re
|
||||||
|
|
||||||
|
|
||||||
|
DEFAULT_PREDICTION = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
|
||||||
|
|
||||||
|
|
||||||
|
def preprocess_text(text):
|
||||||
|
# normalize text
|
||||||
|
text = (
|
||||||
|
unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode(
|
||||||
|
'utf-8', 'ignore'))
|
||||||
|
# replace html chars with ' '
|
||||||
|
text = re.sub('<.*?>', ' ', text)
|
||||||
|
# remove punctuation
|
||||||
|
text = text.translate(str.maketrans(' ', ' ', string.punctuation))
|
||||||
|
# only alphabets and numerics
|
||||||
|
text = re.sub('[^a-zA-Z]', ' ', text)
|
||||||
|
# replace newline with space
|
||||||
|
text = re.sub("\n", " ", text)
|
||||||
|
# lower case
|
||||||
|
text = text.lower()
|
||||||
|
# split and join the words
|
||||||
|
text = ' '.join(text.split())
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def predict_probs(word1, word2):
|
||||||
|
raw_prediction = dict(model[word1, word2])
|
||||||
|
prediction = dict(Counter(raw_prediction).most_common(6))
|
||||||
|
|
||||||
|
total_prob = 0.0
|
||||||
|
str_prediction = ''
|
||||||
|
|
||||||
|
for word, prob in prediction.items():
|
||||||
|
total_prob += prob
|
||||||
|
str_prediction += f'{word}:{prob} '
|
||||||
|
|
||||||
|
if total_prob == 0.0:
|
||||||
|
return DEFAULT_PREDICTION
|
||||||
|
|
||||||
|
remaining_prob = 1 - total_prob
|
||||||
|
|
||||||
|
if remaining_prob < 0.01:
|
||||||
|
remaining_prob = 0.01
|
||||||
|
|
||||||
|
str_prediction += f':{remaining_prob}'
|
||||||
|
|
||||||
|
return str_prediction
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_output(file_path):
|
||||||
|
with open(file_path, 'w') as file:
|
||||||
|
for index, row in test_data.iterrows():
|
||||||
|
text = preprocess_text(str(row[7]))
|
||||||
|
words = word_tokenize(text)
|
||||||
|
if len(words) < 4:
|
||||||
|
prediction = DEFAULT_PREDICTION
|
||||||
|
else:
|
||||||
|
prediction = predict_probs(words[0], words[1])
|
||||||
|
file.write(prediction + '\n')
|
||||||
|
|
||||||
|
|
||||||
|
def train_model(training_data):
|
||||||
|
for _, row in training_data.iterrows():
|
||||||
|
text = preprocess_text(str(row["final"]))
|
||||||
|
words = word_tokenize(text)
|
||||||
|
for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True):
|
||||||
|
if all([w1, w2]):
|
||||||
|
model[(w1, w2)][w2] += 1
|
||||||
|
total_count = 0
|
||||||
|
for w1, w2 in model:
|
||||||
|
total_count = float(sum(model[(w1, w2)].values()))
|
||||||
|
for w3 in model[(w1, w2)]:
|
||||||
|
model[(w1, w2)][w3] /= total_count
|
||||||
|
# for index, row in training_data.iterrows():
|
||||||
|
# text = preprocess_text(str(row['final']))
|
||||||
|
# words = word_tokenize(text)
|
||||||
|
# for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True):
|
||||||
|
# if w1 and w2 and w3:
|
||||||
|
# model[(w1, w2)][w3] += 1
|
||||||
|
#
|
||||||
|
# for w1, w2 in model:
|
||||||
|
# total_count = float(sum(model[(w1, w2)].values()))
|
||||||
|
# for w3 in model:
|
||||||
|
# model[(w1, w2)][w3] /= total_count
|
||||||
|
|
||||||
|
# print(model)
|
||||||
|
|
||||||
|
|
||||||
|
data = pd.read_csv(
|
||||||
|
"train/in.tsv.xz",
|
||||||
|
sep="\t",
|
||||||
|
error_bad_lines=False,
|
||||||
|
warn_bad_lines=False,
|
||||||
|
header=None,
|
||||||
|
quoting=csv.QUOTE_NONE,
|
||||||
|
nrows=200000,
|
||||||
|
)
|
||||||
|
train_labels = pd.read_csv(
|
||||||
|
"train/expected.tsv",
|
||||||
|
sep="\t",
|
||||||
|
error_bad_lines=False,
|
||||||
|
header=None,
|
||||||
|
quoting=csv.QUOTE_NONE,
|
||||||
|
nrows=200000,
|
||||||
|
)
|
||||||
|
|
||||||
|
train_data = data[[6, 7]]
|
||||||
|
train_data = pd.concat([train_data, train_labels], axis=1)
|
||||||
|
train_data["final"] = train_data[6] + train_data[0] + train_data[7]
|
||||||
|
|
||||||
|
model = defaultdict(lambda: defaultdict(lambda: 0))
|
||||||
|
|
||||||
|
|
||||||
|
dev_data = pd.read_csv('dev-0/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
||||||
|
test_data = pd.read_csv('test-A/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
||||||
|
|
||||||
|
|
||||||
|
train_model(train_data)
|
||||||
|
prepare_output("dev-0/out.tsv")
|
||||||
|
prepare_output("test-A/out.tsv")
|
BIN
test-A/in.tsv.xz
Normal file
BIN
test-A/in.tsv.xz
Normal file
Binary file not shown.
7414
test-A/out.tsv
Normal file
7414
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
432022
train/expected.tsv
Normal file
432022
train/expected.tsv
Normal file
File diff suppressed because it is too large
Load Diff
BIN
train/in.tsv.xz
Normal file
BIN
train/in.tsv.xz
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user