s430705 plusalpha
This commit is contained in:
parent
9d77a3a7ee
commit
819ce98f3d
21034
dev-0/out.tsv
21034
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
164
run.py
164
run.py
@ -1,111 +1,115 @@
|
|||||||
import string
|
|
||||||
import unicodedata
|
|
||||||
|
|
||||||
from nltk.tokenize import word_tokenize
|
from nltk.tokenize import word_tokenize
|
||||||
from nltk import trigrams
|
from nltk import trigrams
|
||||||
from collections import defaultdict, Counter
|
from collections import defaultdict, Counter
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import csv
|
import csv
|
||||||
import regex as re
|
|
||||||
|
|
||||||
|
|
||||||
DEFAULT_PREDICTION = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
|
class GapPredictor:
|
||||||
|
def __init__(self, alpha):
|
||||||
|
self.model = defaultdict(lambda: defaultdict(lambda: 0))
|
||||||
|
self.alpha = alpha
|
||||||
|
self.vocab = set()
|
||||||
|
self.DEFAULT_PREDICTION = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
def preprocess_text(text):
|
def preprocess_text(text):
|
||||||
text = text.lower().replace("-\\n", "").replace("\\n", " ")
|
text = text.lower().replace("-\\n", "").replace("\\n", " ")
|
||||||
|
|
||||||
return text
|
return text
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
def predict_probs(word1, word2):
|
def _prepare_train_data():
|
||||||
raw_prediction = dict(model[word1, word2])
|
data = pd.read_csv(
|
||||||
prediction = dict(Counter(raw_prediction).most_common(6))
|
|
||||||
|
|
||||||
total_prob = 0.0
|
|
||||||
str_prediction = ''
|
|
||||||
|
|
||||||
for word, prob in prediction.items():
|
|
||||||
total_prob += prob
|
|
||||||
str_prediction += f'{word}:{prob} '
|
|
||||||
|
|
||||||
if total_prob == 0.0:
|
|
||||||
return DEFAULT_PREDICTION
|
|
||||||
|
|
||||||
remaining_prob = 1 - total_prob
|
|
||||||
|
|
||||||
if remaining_prob < 0.01:
|
|
||||||
remaining_prob = 0.01
|
|
||||||
|
|
||||||
str_prediction += f':{remaining_prob}'
|
|
||||||
|
|
||||||
return str_prediction
|
|
||||||
|
|
||||||
|
|
||||||
def train_model(training_data):
|
|
||||||
for index, row in training_data.iterrows():
|
|
||||||
text = preprocess_text(str(row["final"]))
|
|
||||||
words = word_tokenize(text)
|
|
||||||
for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True):
|
|
||||||
if w1 and w2 and w3:
|
|
||||||
model[(w2, w3)][w1] += 1
|
|
||||||
model[(w1, w2)][w3] += 1
|
|
||||||
|
|
||||||
for word_pair in model:
|
|
||||||
num_n_grams = float(sum(model[word_pair].values()))
|
|
||||||
for word in model[word_pair]:
|
|
||||||
model[word_pair][word] /= num_n_grams
|
|
||||||
|
|
||||||
|
|
||||||
data = pd.read_csv(
|
|
||||||
"train/in.tsv.xz",
|
"train/in.tsv.xz",
|
||||||
sep="\t",
|
sep="\t",
|
||||||
error_bad_lines=False,
|
error_bad_lines=False,
|
||||||
warn_bad_lines=False,
|
warn_bad_lines=False,
|
||||||
header=None,
|
header=None,
|
||||||
quoting=csv.QUOTE_NONE,
|
quoting=csv.QUOTE_NONE,
|
||||||
nrows=100000,
|
nrows=90000,
|
||||||
)
|
)
|
||||||
|
|
||||||
train_labels = pd.read_csv(
|
train_labels = pd.read_csv(
|
||||||
"train/expected.tsv",
|
"train/expected.tsv",
|
||||||
sep="\t",
|
sep="\t",
|
||||||
error_bad_lines=False,
|
error_bad_lines=False,
|
||||||
header=None,
|
header=None,
|
||||||
quoting=csv.QUOTE_NONE,
|
quoting=csv.QUOTE_NONE,
|
||||||
nrows=100000,
|
nrows=90000,
|
||||||
)
|
)
|
||||||
|
|
||||||
train_data = data[[6, 7]]
|
train_data = data[[6, 7]]
|
||||||
train_data = pd.concat([train_data, train_labels], axis=1)
|
train_data = pd.concat([train_data, train_labels], axis=1)
|
||||||
train_data["final"] = train_data[6] + train_data[0] + train_data[7]
|
train_data["final"] = train_data[6] + train_data[0] + train_data[7]
|
||||||
|
|
||||||
model = defaultdict(lambda: defaultdict(lambda: 0))
|
return train_data
|
||||||
|
|
||||||
|
def train_model(self):
|
||||||
dev_data = pd.read_csv('dev-0/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
training_data = self._prepare_train_data()
|
||||||
test_data = pd.read_csv('test-A/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
for index, row in training_data.iterrows():
|
||||||
|
text = self.preprocess_text(str(row["final"]))
|
||||||
|
|
||||||
train_model(train_data)
|
|
||||||
|
|
||||||
with open("dev-0/out.tsv", "w") as file:
|
|
||||||
for _, row in dev_data.iterrows():
|
|
||||||
text = preprocess_text(str(row[7]))
|
|
||||||
words = word_tokenize(text)
|
words = word_tokenize(text)
|
||||||
|
for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True):
|
||||||
|
if w1 and w2 and w3:
|
||||||
|
self.model[(w2, w3)][w1] += 1
|
||||||
|
self.model[(w1, w2)][w3] += 1
|
||||||
|
self.vocab.add(w1)
|
||||||
|
self.vocab.add(w2)
|
||||||
|
self.vocab.add(w3)
|
||||||
|
|
||||||
|
for word_pair in self.model:
|
||||||
|
num_n_grams = float(sum(self.model[word_pair].values()))
|
||||||
|
for word in self.model[word_pair]:
|
||||||
|
self.model[word_pair][word] = (
|
||||||
|
self.model[word_pair][word] + self.alpha
|
||||||
|
) / (num_n_grams + self.alpha * len(self.vocab))
|
||||||
|
|
||||||
|
def predict_probs(self, words):
|
||||||
if len(words) < 3:
|
if len(words) < 3:
|
||||||
prediction = DEFAULT_PREDICTION
|
return self.DEFAULT_PREDICTION
|
||||||
else:
|
|
||||||
prediction = predict_probs(words[0], words[1])
|
word1, word2 = words[0], words[1]
|
||||||
|
raw_prediction = dict(self.model[word1, word2])
|
||||||
|
prediction = dict(Counter(raw_prediction).most_common(6))
|
||||||
|
|
||||||
|
total_prob = 0.0
|
||||||
|
str_prediction = ""
|
||||||
|
|
||||||
|
for word, prob in prediction.items():
|
||||||
|
total_prob += prob
|
||||||
|
str_prediction += f"{word}:{prob} "
|
||||||
|
|
||||||
|
if total_prob == 0.0:
|
||||||
|
return self.DEFAULT_PREDICTION
|
||||||
|
|
||||||
|
remaining_prob = 1 - total_prob
|
||||||
|
|
||||||
|
if remaining_prob < 0.01:
|
||||||
|
remaining_prob = 0.01
|
||||||
|
|
||||||
|
str_prediction += f":{remaining_prob}"
|
||||||
|
|
||||||
|
return str_prediction
|
||||||
|
|
||||||
|
def prepare_output(self, input_file, output_file):
|
||||||
|
with open(output_file, "w") as file:
|
||||||
|
data = pd.read_csv(
|
||||||
|
input_file,
|
||||||
|
sep="\t",
|
||||||
|
error_bad_lines=False,
|
||||||
|
warn_bad_lines=False,
|
||||||
|
header=None,
|
||||||
|
quoting=csv.QUOTE_NONE,
|
||||||
|
)
|
||||||
|
for _, row in data.iterrows():
|
||||||
|
text = self.preprocess_text(str(row[7]))
|
||||||
|
words = word_tokenize(text)
|
||||||
|
prediction = self.predict_probs(words)
|
||||||
file.write(prediction + "\n")
|
file.write(prediction + "\n")
|
||||||
|
|
||||||
with open("test-A/out.tsv", "w") as file:
|
|
||||||
for _, row in test_data.iterrows():
|
|
||||||
text = preprocess_text(str(row[7]))
|
|
||||||
words = word_tokenize(text)
|
|
||||||
if len(words) < 3:
|
|
||||||
prediction = DEFAULT_PREDICTION
|
|
||||||
else:
|
|
||||||
prediction = predict_probs(words[0], words[1])
|
|
||||||
file.write(prediction + "\n")
|
|
||||||
|
|
||||||
|
predictor = GapPredictor(alpha=0.00002)
|
||||||
|
predictor.train_model()
|
||||||
|
|
||||||
|
predictor.prepare_output("dev-0/in.tsv.xz", "dev-0/out.tsv")
|
||||||
|
predictor.prepare_output("test-A/in.tsv.xz", "test-A/out.tsv")
|
||||||
|
14714
test-A/out.tsv
14714
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user