188 lines
4.8 KiB
Python
188 lines
4.8 KiB
Python
import csv
|
|
import itertools
|
|
from os.path import exists
|
|
|
|
import pandas as pd
|
|
import regex as re
|
|
import torch
|
|
from torch import nn
|
|
from torch.utils.data import DataLoader
|
|
from torchtext.vocab import build_vocab_from_iterator
|
|
|
|
IN_INPUT_PATH = "train/in.tsv.xz"
|
|
IN_OUTPUT_PATH = "train/expected.tsv"
|
|
VOCAB_SIZE = 30000
|
|
EMBED_SIZE = 150
|
|
BATCH_SIZE = 8000
|
|
DEV_PATH = "dev-0/"
|
|
TEST_PATH = "test-A/"
|
|
DEVICE = "cpu"
|
|
|
|
|
|
def clean(text):
|
|
text = str(text).lower().replace("-\\n", "").replace("\\n", " ")
|
|
return re.sub(r"\p{P}", "", text)
|
|
|
|
|
|
def get_words_from_line(line, specials=True):
|
|
line = line.rstrip()
|
|
if specials:
|
|
yield "<s>"
|
|
for m in re.finditer(r"[\p{L}0-9\*]+|\p{P}+", line):
|
|
yield m.group(0).lower()
|
|
if specials:
|
|
yield "</s>"
|
|
|
|
|
|
def get_word_lines_from_data(d):
|
|
for line in d:
|
|
yield get_words_from_line(line)
|
|
|
|
|
|
def look_ahead_iterator(gen):
|
|
w1 = None
|
|
for item in gen:
|
|
if w1 is not None:
|
|
yield (w1, item)
|
|
w1 = item
|
|
|
|
|
|
class SimpleBigramNeuralLanguageModel(torch.nn.Module):
|
|
def __init__(self, vocabulary_size, embedding_size):
|
|
super(SimpleBigramNeuralLanguageModel, self).__init__()
|
|
self.model = nn.Sequential(
|
|
nn.Embedding(vocabulary_size, embedding_size),
|
|
nn.Linear(embedding_size, vocabulary_size),
|
|
nn.Softmax(),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.model(x)
|
|
|
|
|
|
class Bigrams(torch.utils.data.IterableDataset):
|
|
def __init__(self, data, vocabulary_size):
|
|
self.vocab = build_vocab_from_iterator(
|
|
get_word_lines_from_data(data),
|
|
max_tokens=vocabulary_size,
|
|
specials=["<unk>"],
|
|
)
|
|
self.vocab.set_default_index(self.vocab["<unk>"])
|
|
self.vocabulary_size = vocabulary_size
|
|
self.data = data
|
|
|
|
def __iter__(self):
|
|
return look_ahead_iterator(
|
|
(
|
|
self.vocab[t]
|
|
for t in itertools.chain.from_iterable(
|
|
get_word_lines_from_data(self.data)
|
|
)
|
|
)
|
|
)
|
|
|
|
|
|
def get_dataset():
|
|
X_train = pd.read_csv(
|
|
IN_INPUT_PATH,
|
|
sep="\t",
|
|
header=None,
|
|
quoting=csv.QUOTE_NONE,
|
|
nrows=200000,
|
|
on_bad_lines="skip",
|
|
encoding="UTF-8",
|
|
)
|
|
Y_train = pd.read_csv(
|
|
IN_OUTPUT_PATH,
|
|
sep="\t",
|
|
header=None,
|
|
quoting=csv.QUOTE_NONE,
|
|
nrows=200000,
|
|
on_bad_lines="skip",
|
|
encoding="UTF-8",
|
|
)
|
|
|
|
X_train = X_train[[6, 7]]
|
|
X_train = pd.concat([X_train, Y_train], axis=1)
|
|
X_train = X_train[6] + X_train[0] + X_train[7]
|
|
X_train = X_train.apply(clean)
|
|
return Bigrams(X_train, VOCAB_SIZE)
|
|
|
|
|
|
dataset = get_dataset()
|
|
|
|
|
|
def get_model():
|
|
|
|
model = SimpleBigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE).to(DEVICE)
|
|
|
|
if not exists("nn_model.bin"):
|
|
data = DataLoader(dataset, batch_size=BATCH_SIZE)
|
|
optimizer = torch.optim.Adam(model.parameters())
|
|
criterion = torch.nn.NLLLoss()
|
|
|
|
model.train()
|
|
step = 0
|
|
for i in range(2):
|
|
for x, y in data:
|
|
x = x.to(DEVICE)
|
|
y = y.to(DEVICE)
|
|
optimizer.zero_grad()
|
|
y_predicted = model(x)
|
|
loss = criterion(torch.log(y_predicted), y)
|
|
if step % 100 == 0:
|
|
print(step, loss)
|
|
step += 1
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
torch.save(model.state_dict(), "nn_model.bin")
|
|
else:
|
|
model.load_state_dict(torch.load("nn_model.bin", map_location=torch.device('cpu')))
|
|
return model
|
|
|
|
|
|
vocab = dataset.vocab
|
|
model = get_model()
|
|
|
|
|
|
def predict(ws):
|
|
ixs = torch.tensor(vocab.forward(ws)).to(DEVICE)
|
|
out = model(ixs)
|
|
top = torch.topk(out[0], 8)
|
|
top_indices = top.indices.tolist()
|
|
top_probs = top.values.tolist()
|
|
top_words = vocab.lookup_tokens(top_indices)
|
|
pred_str = ""
|
|
for word, prob in list(zip(top_words, top_probs)):
|
|
pred_str += f"{word}:{prob} "
|
|
return pred_str
|
|
|
|
|
|
def predict_input(file):
|
|
X_test = pd.read_csv(
|
|
f"{file}/in.tsv.xz",
|
|
sep="\t",
|
|
header=None,
|
|
quoting=csv.QUOTE_NONE,
|
|
on_bad_lines="skip",
|
|
encoding="UTF-8",
|
|
)[6]
|
|
X_test = X_test.apply(clean)
|
|
with open(f"{file}/out.tsv", "w+", encoding="UTF-8") as f:
|
|
for row in X_test:
|
|
before = None
|
|
for before in get_words_from_line(clean(str(row)), False):
|
|
pass
|
|
before = [before]
|
|
if len(before) < 1:
|
|
pred_str = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
|
else:
|
|
pred_str = predict(before)
|
|
pred_str = pred_str.strip()
|
|
f.write(pred_str + "\n")
|
|
|
|
|
|
predict_input(DEV_PATH)
|
|
predict_input(TEST_PATH)
|