2021-05-27 13:51:19 +02:00
|
|
|
import json
|
|
|
|
import mlflow
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
model_name = "s430705"
|
2021-05-27 14:16:22 +02:00
|
|
|
model_version = 30
|
2021-05-27 13:54:34 +02:00
|
|
|
|
2021-05-27 13:51:19 +02:00
|
|
|
mlflow.set_tracking_uri("http://172.17.0.1:5000")
|
|
|
|
|
|
|
|
model = mlflow.pyfunc.load_model(
|
|
|
|
model_uri=f"models:/{model_name}/{model_version}"
|
|
|
|
)
|
|
|
|
|
2021-05-27 14:38:58 +02:00
|
|
|
with open('/tmp/mlruns/0/6be4f90846214df8913a553bc53b1019/artifacts/movies_imdb2/input_example.json', 'r') as datafile:
|
|
|
|
data = json.load(datafile)
|
|
|
|
example_input = data["inputs"]
|
2021-05-27 13:51:19 +02:00
|
|
|
|
2021-05-27 14:38:58 +02:00
|
|
|
input_dictionary = {i: x for i, x in enumerate(example_input)}
|
|
|
|
input_ex = pd.DataFrame(input_dictionary, index=[0])
|
|
|
|
print(model.predict(input_ex))
|