lab06_02
This commit is contained in:
parent
8892555d61
commit
cdc3c79f36
42
Jenkinsfile_evaluation
Normal file
42
Jenkinsfile_evaluation
Normal file
@ -0,0 +1,42 @@
|
||||
pipeline {
|
||||
agent {
|
||||
dockerfile true
|
||||
}
|
||||
parameters{
|
||||
buildSelector(
|
||||
defaultSelector: lastSuccessful(),
|
||||
description: 'Which build to use for copying artifacts',
|
||||
name: 'WHICH_BUILD_DATA'
|
||||
)
|
||||
buildSelector(
|
||||
defaultSelector: lastSuccessful(),
|
||||
description: 'Which build to use for copying artifacts',
|
||||
name: 'WHICH_BUILD_TRAIN'
|
||||
)
|
||||
}
|
||||
stages {
|
||||
stage('checkout') {
|
||||
steps {
|
||||
copyArtifacts fingerprintArtifacts: true, projectName: 's430705-create-dataset', selector: buildParameter('WHICH_BUILD_DATA')
|
||||
}
|
||||
}
|
||||
stage('Docker'){
|
||||
steps{
|
||||
copyArtifacts fingerprintArtifacts: true, projectName: 's430705-training/master', selector: buildParameter('WHICH_BUILD_TRAIN')
|
||||
sh 'python3 "./lab06-eval.py" >> eval.txt'
|
||||
}
|
||||
}
|
||||
stage('archiveArtifacts') {
|
||||
steps {
|
||||
archiveArtifacts 'eval.txt'
|
||||
}
|
||||
}
|
||||
stage('sendMail') {
|
||||
steps{
|
||||
emailext body: currentBuild.result ?: 'SUCCESS EVALUATION',
|
||||
subject: 's430705 evaluation',
|
||||
to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
22
lab06-eval.py
Normal file
22
lab06-eval.py
Normal file
@ -0,0 +1,22 @@
|
||||
from tensorflow.keras.models import Sequential
|
||||
from tensorflow.keras.layers import Dense
|
||||
from tensorflow.keras.optimizers import Adam
|
||||
from tensorflow.keras.layers import Dropout
|
||||
from tensorflow.keras.callbacks import EarlyStopping
|
||||
from sklearn.metrics import mean_squared_error, mean_absolute_error, accuracy_score
|
||||
from tensorflow.keras.models import load_model
|
||||
import pandas as pd
|
||||
|
||||
test_df = pd.read_csv('test.csv')
|
||||
test_df.drop(test_df.columns[0], axis=1, inplace=True)
|
||||
x_test = test_df.drop("rating", axis=1)
|
||||
y_test = test_df["rating"]
|
||||
|
||||
model = Sequential()
|
||||
model = load_model('model_movies')
|
||||
|
||||
y_pred = model.predict(x_test.values)
|
||||
|
||||
rmse = mean_squared_error(y_test, y_pred)
|
||||
|
||||
print(f"RMSE: {rmse}")
|
Loading…
Reference in New Issue
Block a user