import string import pandas as pd from sklearn.model_selection import train_test_split from sklearn import preprocessing import kaggle kaggle.api.authenticate() kaggle.api.dataset_download_files("pustola/9900-imdb-movies", path=".", unzip=True) movies_data = pd.read_csv("imdb_movies.csv") # Drop rows with missing values movies_data.dropna(inplace=True) # Remove not interesting columns drop_columns = ["title_id", "certificate", "title", "plot"] movies_data.drop(labels=drop_columns, axis=1, inplace=True) # Normalize data, lowercase str for column_name in ["original_title", "countries", "genres", "director", "cast"]: movies_data[column_name] = ( movies_data[column_name] .str.translate(str.maketrans("", "", string.punctuation)) .str.lower() ) # Remove ',' from votes number and change type to int movies_data["votes_number"] = (movies_data["votes_number"].str.replace(",", "")).astype( int ) # Normalize number values scaler = preprocessing.MinMaxScaler() movies_data[["rating", "votes_number", "year"]] = scaler.fit_transform( movies_data[["rating", "votes_number", "year"]] ) # Split set to train/dev/test 6:2:2 ratio and save to .csv file train, dev = train_test_split(movies_data, train_size=0.6, test_size=0.4, shuffle=True) dev, test = train_test_split(dev, train_size=0.5, test_size=0.5, shuffle=True) train.to_csv("train.csv") dev.to_csv("dev.csv") test.to_csv("test.csv") # Get length of given sets print(f"Test dataset length: {len(test)}") print(f"Dev dataset length: {len(dev)}") print(f"Train dataset length: {len(train)}") print(f"Whole dataset length: {len(movies_data)}, \n") # Print information of given columns for column in ["year", "rating", "runtime", "votes_number"]: column_data = movies_data[column] print(f"Information on {column}") print(f"Min: {column_data.min()}") print(f"Mak: {column_data.max()}") print(f"Mean: {column_data.mean()}") print(f"Median: {column_data.median()}") print(f"Standard deviation: {column_data.std()}, \n")