import json import mlflow import pandas as pd from pprint import pprint from mlflow.tracking import MlflowClient model_name = "s430705" model_version = 30 mlflow.set_tracking_uri("http://172.17.0.1:5000") model = mlflow.pyfunc.load_model( model_uri=f"models:/{model_name}/{model_version}" ) client = MlflowClient() models_version = client.search_model_versions("name='s430705'") print(type(models_version)) with open('/tmp/mlruns/0/6be4f90846214df8913a553bc53b1019/artifacts/movies_imdb2/input_example.json', 'r') as datafile: data = json.load(datafile) example_input = data["inputs"] input_dictionary = {i: x for i, x in enumerate(example_input)} input_ex = pd.DataFrame(input_dictionary, index=[0]) print(model.predict(input_ex))