import pandas as pd from sklearn.metrics import mean_absolute_error from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.models import Sequential movies_train = pd.read_csv("train.csv") X_train = movies_train.drop("rating", axis=1) Y_train = movies_train["rating"] movies_test = pd.read_csv("test.csv") X_test = movies_test.drop("rating", axis=1) Y_test = movies_test["rating"] # Set up model model = Sequential() model.add(Dense(8, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(3, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(1)) model.compile(optimizer="adam", loss="mse") early_stop = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10) model.fit( x=X_train, y=Y_train.values, validation_data=(X_test, Y_test.values), batch_size=128, epochs=400, callbacks=[early_stop], ) # Predict movie ratings predictions = model.predict(X_test) pd.DataFrame(predictions).to_csv("results.csv") # Compare outputs for i, score in enumerate(predictions): print(f"Original score: {Y_test.iloc[i]} Predicted score: {score} \n") print(f"Difference is : {Y_test.iloc[i] - score}") # Evaluate print(mean_absolute_error(Y_test, predictions))