paranormal-or-skeptic-ISI-p.../neural-network2.py

152 lines
4.5 KiB
Python
Raw Normal View History

2021-05-11 16:06:32 +02:00
import pandas as pd
from gensim.utils import simple_preprocess
from gensim.parsing.porter import PorterStemmer
from gensim import corpora
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch
class FeedforwardNeuralNetModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(FeedforwardNeuralNetModel, self).__init__()
# Linear function 1: vocab_size --> 500
self.fc1 = nn.Linear(input_dim, hidden_dim)
# Non-linearity 1
self.relu1 = nn.ReLU()
# Linear function 2: 500 --> 500
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
# Non-linearity 2
self.relu2 = nn.ReLU()
# Linear function 3 (readout): 500 --> 3
self.fc3 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
# Linear function 1
out = self.fc1(x)
# Non-linearity 1
out = self.relu1(out)
# Non-linearity 2
out = self.relu2(out)
# Linear function 3 (readout)
out = self.fc3(out)
return F.softmax(out, dim=1)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_expected = pd.read_csv('train/expected.tsv', header=None, sep='\t')
train_df = pd.read_csv('train/in.tsv', header=None, sep='\t')
# test_df = pd.read_csv('test-A/in.tsv', header=None, sep='\t')
test_df = pd.read_csv('dev-0/in.tsv', header=None, sep='\t')
y_train = pd.DataFrame(train_expected[0])
train_df[0] = [simple_preprocess(text, deacc=True) for text in train_df[0]]
porter_stemmer = PorterStemmer()
train_df['stemmed_tokens'] = [[porter_stemmer.stem(word) for word in tokens] for tokens in train_df[0]]
test_df[0] = [simple_preprocess(text, deacc=True) for text in test_df[0]]
test_df['stemmed_tokens'] = [[porter_stemmer.stem(word) for word in tokens] for tokens in test_df[0]]
x_test = pd.DataFrame(test_df['stemmed_tokens'])
x_train = pd.DataFrame(train_df['stemmed_tokens'])
def make_dict(top_data_df_small, padding=True):
if padding:
print("Dictionary with padded token added")
review_dict = corpora.Dictionary([['pad']])
review_dict.add_documents(top_data_df_small['stemmed_tokens'])
else:
print("Dictionary without padding")
review_dict = corpora.Dictionary(top_data_df_small['stemmed_tokens'])
return review_dict
# Make the dictionary without padding for the basic models
review_dict = make_dict(train_df, padding=False)
VOCAB_SIZE = len(review_dict)
NUM_LABELS = 2
# Function to make bow vector to be used as input to network
def make_bow_vector(review_dict, sentence):
vec = torch.zeros(VOCAB_SIZE, dtype=torch.float64, device=device)
for word in sentence:
vec[review_dict.token2id[word]] += 1
return vec.view(1, -1).float()
input_dim = VOCAB_SIZE
hidden_dim = 10
output_dim = 2
num_epochs = 2
ff_nn_bow_model = FeedforwardNeuralNetModel(input_dim, hidden_dim, output_dim)
ff_nn_bow_model.to(device)
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(ff_nn_bow_model.parameters(), lr=0.001)
losses = []
iter = 0
def make_target(label):
if label == 0:
return torch.tensor([0], dtype=torch.long, device=device)
elif label == 1:
return torch.tensor([1], dtype=torch.long, device=device)
# Start training
for epoch in range(num_epochs):
if (epoch + 1) % 25 == 0:
print("Epoch completed: " + str(epoch + 1))
print(f"Epoch number: {epoch}")
train_loss = 0
for index, row in x_train.iterrows():
print(index)
# Clearing the accumulated gradients
optimizer.zero_grad()
# Make the bag of words vector for stemmed tokens
bow_vec = make_bow_vector(review_dict, row['stemmed_tokens'])
# Forward pass to get output
probs = ff_nn_bow_model(bow_vec)
# Get the target label
target = make_target(y_train[0][index])
# Calculate Loss: softmax --> cross entropy loss
loss = loss_function(probs, target)
# Accumulating the loss over time
train_loss += loss.item()
# Getting gradients w.r.t. parameters
loss.backward()
# Updating parameters
optimizer.step()
train_loss = 0
bow_ff_nn_predictions = []
original_lables_ff_bow = []
with torch.no_grad():
for index, row in x_test.iterrows():
bow_vec = make_bow_vector(review_dict, row['stemmed_tokens'])
probs = ff_nn_bow_model(bow_vec)
bow_ff_nn_predictions.append(torch.argmax(probs, dim=1).cpu().numpy()[0])