This commit is contained in:
s430705 2021-05-13 15:53:20 +02:00
parent c8fcf6e4df
commit d6f42e9659

View File

@ -5,8 +5,14 @@ import numpy as np
import torch import torch
import torch.nn as nn import torch.nn as nn
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
from sklearn.feature_extraction.text import HashingVectorizer
import torch.nn.functional as F
import torch.optim as optim
import torch
from torch.optim import optimizer
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' vectorizer = HashingVectorizer(n_features=20)
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
print('debug 1') print('debug 1')
train_df = pd.read_csv('train/in.tsv', header=None, sep='\t') train_df = pd.read_csv('train/in.tsv', header=None, sep='\t')
@ -18,85 +24,143 @@ train_text = train_df[0].tolist()
test_text = test_df[0].tolist() test_text = test_df[0].tolist()
dev_text = test_df[0].tolist() dev_text = test_df[0].tolist()
text_data = train_text + test_text + dev_text text_data = train_text
# print(train_text)
vectorize_layer = TextVectorization(max_tokens=5, output_mode="int") vectorize_layer = TextVectorization(max_tokens=5, output_mode="int")
text_data = tf.data.Dataset.from_tensor_slices(text_data) text_data = tf.data.Dataset.from_tensor_slices(text_data)
vectorize_layer.adapt(text_data.batch(64)) vectorize_layer.adapt(text_data.batch(64))
inputs = tf.keras.layers.Input(shape=(1,), dtype=tf.string, name="text") inputs = tf.keras.layers.Input(shape=(1,), dtype=tf.string, name="text")
outputs = vectorize_layer(inputs) outputs = vectorize_layer(inputs)
model = tf.keras.Model(inputs, outputs) model = tf.keras.Model(inputs, outputs)
print('uwaga debug') print('model loaded')
x_train = list(map(model.predict, train_text)) train_text = train_df[0].apply(lambda x: vectorizer.transform([x]))
y_train = train_expected[0] test_text = test_df[0].apply(lambda x: vectorizer.transform([x]))
x_test = list(map(model.predict, test_text))
x_train = train_text.tolist()
x_test = test_text.tolist()
# x_train = list(map(model.predict, train_text))
# x_train = [model.predict([x]) for x in train_text]
y_train = train_expected[0].astype(np.float32)
# x_test = list(map(model.predict, test_text))
# x_test = [model.predict([x]) for x in test_text]
loss_function = nn.CrossEntropyLoss() loss_function = nn.CrossEntropyLoss()
x_train = pd.DataFrame(x_train) x_train = pd.DataFrame(x_train)
x_test = pd.DataFrame(x_test) x_test = pd.DataFrame(x_test)
y_train = pd.DataFrame(y_train[0]) y_train = pd.DataFrame(y_train)
print("End of vectorization")
# (model.predict(["Murder in the forset!"])) # print((model.predict("Murder in the forset!")))
class FeedforwardNeuralNetModel(nn.Module): class FeedforwardNeuralNetModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim): def __init__(self):
super(FeedforwardNeuralNetModel, self).__init__() super(FeedforwardNeuralNetModel, self).__init__()
# Linear function # Linear function 1: vocab_size --> 500
self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc1 = nn.Linear(FEAUTERES, 500)
# Non-linearity 1
self.fc2 = nn.Linear(500,1)
# self.relu1 = nn.ReLU()
# Non-linearity # Linear function 2: 500 --> 500
self.sigmoid = nn.Sigmoid() # self.fc2 = nn.Linear(hidden_dim, hidden_dim)
# Non-linearity 2
# self.relu2 = nn.ReLU()
# Linear function (readout) # Linear function 3 (readout): 500 --> 3
self.fc2 = nn.Linear(hidden_dim, output_dim) # self.fc3 = nn.Linear(hidden_dim, output_dim)
def forward(self, x): def forward(self, x):
# Linear function # LINEAR # Linear function 1
out = self.fc1(x) out = self.fc1(x)
# Non-linearity 1
out = self.relu1(out)
# Non-linearity # NON-LINEAR # Non-linearity 2
out = self.sigmoid(out) out = self.relu2(out)
# Linear function 3 (readout)
# Linear function (readout) # LINEAR
out = self.fc2(out)
return out return out
num_epochs = 2 num_epochs = 2
for epoch in range(num_epochs): x_dict = x_train.to_dict()
if (epoch + 1) % 25 == 0: y_train = y_train.to_dict()
print("Epoch completed: " + str(epoch + 1))
print(f"Epoch number: {epoch}")
train_loss = 0
for index, row in x_train.iterrows():
print(index)
# Forward pass to get output
probs = x_train[0][index]
# Get the target label
target = y_train[0][index]
# Calculate Loss: softmax --> cross entropy loss nn_model = FeedforwardNeuralNetModel()
loss = loss_function(probs, target) BATCH_SIZE = 5
# Accumulating the loss over time criterion = torch.nn.BCELoss()
train_loss += loss.item() optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)
# Getting gradients w.r.t. parameters for epoch in range(5):
loss_score = 0
acc_score = 0
items_total = 0
nn_model.train()
for i in range(0, Y_train.shape[0], BATCH_SIZE):
X = X_train[i:i+BATCH_SIZE]
X = torch.tensor(X.astype(np.float32).todense())
Y = Y_train[i:i+BATCH_SIZE]
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
Y_predictions = nn_model(X)
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
items_total += Y.shape[0]
optimizer.zero_grad()
loss = criterion(Y_predictions, Y)
loss.backward() loss.backward()
optimizer.step()
loss_score += loss.item() * Y.shape[0]
train_loss = 0
bow_ff_nn_predictions = [] # for epoch in range(num_epochs):
original_lables_ff_bow = [] # if (epoch + 1) % 25 == 0:
with torch.no_grad(): # print("Epoch completed: " + str(epoch + 1))
for index, row in x_test.iterrows(): # print(f"Epoch number: {epoch}")
probs = x_test[0][index] # train_loss = 0
bow_ff_nn_predictions.append(torch.argmax(probs, dim=1).cpu().numpy()[0]) # for index, row in x_train.iterrows():
# # for index, row in x_train.iterrows():
#
#
# print(row, index)
# # Forward pass to get output
# probs = x_train[0][index]
# # probs = torch.tensor(probs.astype(np.float32))
# # Get the target label
# target = y_train[0][index]
# print(target)
# # target = np.array(target).astype(np.float32)
# print(type(target))
# # target = .astype(np.float32).reshape(-1,1)
# # target
# # target = torch.tensor(target.astype(np.float32)).reshape(-1,1)
#
# # Calculate Loss: softmax --> cross entropy loss
# loss = loss_function(probs, target)
# # Accumulating the loss over time
# train_loss += loss.item()
#
# # Getting gradients w.r.t. parameters
# loss.backward()
#
# train_loss = 0
print(bow_ff_nn_predictions)
# bow_ff_nn_predictions = []
# original_lables_ff_bow = []
# with torch.no_grad():
# for index, row in x_test.iterrows():
# probs = x_test[0][index]
# bow_ff_nn_predictions.append(torch.argmax(probs, dim=1).cpu().numpy()[0])
#
# print(bow_ff_nn_predictions)