2022-05-22 12:33:21 +02:00
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
import tensorflow.keras
|
2022-05-22 12:53:20 +02:00
|
|
|
from sklearn.linear_model import LinearRegression
|
2022-05-22 12:33:21 +02:00
|
|
|
from tensorflow.keras.models import Sequential
|
|
|
|
from tensorflow.keras.layers import Dense
|
|
|
|
|
2022-05-23 17:53:45 +02:00
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
import xgboost as xg
|
|
|
|
from sklearn.compose import TransformedTargetRegressor
|
|
|
|
from sklearn.model_selection import GridSearchCV
|
|
|
|
from sklearn.preprocessing import (
|
|
|
|
QuantileTransformer,
|
|
|
|
StandardScaler,
|
|
|
|
PolynomialFeatures,
|
|
|
|
)
|
|
|
|
|
|
|
|
import tensorflow.keras
|
|
|
|
from tensorflow.keras.models import Sequential
|
|
|
|
from tensorflow.keras.layers import Dense
|
2022-05-22 18:32:43 +02:00
|
|
|
# Import the required library
|
|
|
|
from geopy.geocoders import Nominatim
|
|
|
|
|
|
|
|
# Initialize Nominatim API
|
|
|
|
geolocator = Nominatim(user_agent="MyApp")
|
|
|
|
|
|
|
|
|
|
|
|
|
2022-05-22 12:33:21 +02:00
|
|
|
in_columns = ["id_stacji", "nazwa_stacji", "typ_zbioru", "rok", "miesiąc"]
|
|
|
|
df = pd.read_csv("train/in.tsv", names=in_columns, sep="\t")
|
|
|
|
df_test = pd.read_csv("dev-0/in.tsv", names=in_columns, sep="\t")
|
|
|
|
|
|
|
|
df = pd.concat([df, df_test])
|
2022-05-22 18:32:43 +02:00
|
|
|
# df = df.drop(["nazwa_stacji"], axis=1)
|
|
|
|
x = pd.get_dummies(df, columns=["id_stacji", "rok", "miesiąc"])
|
2022-05-23 17:53:45 +02:00
|
|
|
# geo_lat = {
|
|
|
|
# "BIEBRZA-PIEŃCZYKÓWEK" : 53.65
|
|
|
|
# }
|
|
|
|
# geo_long = {
|
|
|
|
# "BIEBRZA-PIEŃCZYKÓWEK": 22.58
|
|
|
|
# }
|
|
|
|
# for xd in x["nazwa_stacji"].unique():
|
|
|
|
# location = geolocator.geocode(xd)
|
|
|
|
# if xd == "BIEBRZA-PIEŃCZYKÓWEK":
|
|
|
|
# pass
|
|
|
|
# else:
|
|
|
|
# print(xd)
|
|
|
|
# geo_lat[xd] = location.latitude
|
|
|
|
# geo_long[xd] = location.longitude
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# x["latitude"] = x["nazwa_stacji"].map(geo_lat)
|
|
|
|
# x["longitude"] = x["nazwa_stacji"].map(geo_long)
|
2022-05-22 18:32:43 +02:00
|
|
|
x = x.drop(["nazwa_stacji", "typ_zbioru"], axis=1)
|
2022-05-23 17:53:45 +02:00
|
|
|
poly = PolynomialFeatures(2, interaction_only=True)
|
|
|
|
#
|
|
|
|
# print(x)
|
|
|
|
# print(geo_lat)
|
|
|
|
# print(geo_long)
|
2022-05-22 12:33:21 +02:00
|
|
|
x = x.iloc[:-600]
|
2022-05-23 17:53:45 +02:00
|
|
|
x = poly.fit_transform(x)
|
2022-05-22 12:33:21 +02:00
|
|
|
y = pd.read_csv("train/expected.tsv", sep="\t", names=["rainfall"])
|
|
|
|
|
2022-05-22 12:53:20 +02:00
|
|
|
|
|
|
|
from sklearn.preprocessing import PolynomialFeatures
|
2022-05-22 13:21:03 +02:00
|
|
|
# xxx
|
2022-05-22 18:32:43 +02:00
|
|
|
# poly = PolynomialFeatures(2, interaction_only=True)
|
|
|
|
# df = poly.fit_transform(x)
|
2022-05-23 17:53:45 +02:00
|
|
|
param_grid = {
|
|
|
|
"n_estimators": [100, 80, 60, 55, 51, 45],
|
|
|
|
"max_depth": [7, 8],
|
|
|
|
"reg_lambda": [0.26, 0.25, 0.2],
|
|
|
|
}
|
2022-05-22 13:05:09 +02:00
|
|
|
|
2022-05-23 17:53:45 +02:00
|
|
|
grid = GridSearchCV(
|
|
|
|
xg.XGBRFRegressor(), param_grid, refit=True, verbose=3, n_jobs=-1
|
|
|
|
) #
|
|
|
|
regr_trans = TransformedTargetRegressor(
|
|
|
|
regressor=grid, transformer=QuantileTransformer(output_distribution="normal")
|
2022-05-22 13:05:09 +02:00
|
|
|
)
|
|
|
|
|
2022-05-23 17:53:45 +02:00
|
|
|
# fitting the model for grid search
|
|
|
|
grid_result = regr_trans.fit(x, y)
|
|
|
|
best_params = grid_result.regressor_.best_params_
|
|
|
|
|
|
|
|
# using best params to create and fit model
|
|
|
|
best_model = xg.XGBRFRegressor(
|
|
|
|
max_depth=best_params["max_depth"],
|
|
|
|
n_estimators=best_params["n_estimators"],
|
|
|
|
reg_lambda=best_params["reg_lambda"],
|
|
|
|
)
|
|
|
|
regr_trans = TransformedTargetRegressor(
|
|
|
|
regressor=best_model, transformer=QuantileTransformer(output_distribution="normal")
|
2022-05-22 13:05:09 +02:00
|
|
|
)
|
2022-05-23 17:53:45 +02:00
|
|
|
|
|
|
|
regr_trans.fit(x, y)
|
|
|
|
|
|
|
|
# model = Sequential(
|
|
|
|
# [
|
|
|
|
# Dense(512, activation="relu", input_dim=75),
|
|
|
|
# tensorflow.keras.layers.BatchNormalization(),
|
|
|
|
# Dense(512 // 2, activation="relu"),
|
|
|
|
# tensorflow.keras.layers.BatchNormalization(),
|
|
|
|
# Dense(512 // 4, activation="relu"),
|
|
|
|
# tensorflow.keras.layers.BatchNormalization(),
|
|
|
|
# Dense(512 // 8, activation="relu"),
|
|
|
|
# tensorflow.keras.layers.BatchNormalization(),
|
|
|
|
# Dense(32, activation="relu"),
|
|
|
|
# tensorflow.keras.layers.BatchNormalization(),
|
|
|
|
# Dense(1),
|
|
|
|
# ]
|
|
|
|
# )
|
|
|
|
#
|
|
|
|
# model.compile(
|
|
|
|
# loss="mean_squared_error", optimizer="adam", metrics=["mean_squared_error"]
|
|
|
|
# )
|
|
|
|
# model.fit(x, y, epochs=100)
|
2022-05-22 12:33:21 +02:00
|
|
|
|
|
|
|
x_test = pd.read_csv("test-A/in.tsv", sep="\t", names=in_columns)
|
|
|
|
df_train = pd.read_csv("train/in.tsv", names=in_columns, sep="\t")
|
|
|
|
|
2022-05-23 17:53:45 +02:00
|
|
|
# geo_lat = {
|
|
|
|
# "BIEBRZA-PIEŃCZYKÓWEK" : 53.65
|
|
|
|
# }
|
|
|
|
# geo_long = {
|
|
|
|
# "BIEBRZA-PIEŃCZYKÓWEK": 22.58
|
|
|
|
# }
|
2022-05-22 12:33:21 +02:00
|
|
|
x_test = pd.concat([x_test, df_train])
|
2022-05-22 18:32:43 +02:00
|
|
|
|
2022-05-23 17:53:45 +02:00
|
|
|
# for xd in x_test["nazwa_stacji"].unique():
|
|
|
|
# location = geolocator.geocode(xd)
|
|
|
|
# if xd == "BIEBRZA-PIEŃCZYKÓWEK":
|
|
|
|
# pass
|
|
|
|
# else:
|
|
|
|
# print(xd)
|
|
|
|
# geo_lat[xd] = location.latitude
|
|
|
|
# geo_long[xd] = location.longitude
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# x_test["latitude"] = x_test["nazwa_stacji"].map(geo_lat)
|
|
|
|
# x_test["longitude"] = x_test["nazwa_stacji"].map(geo_long)
|
2022-05-22 18:32:43 +02:00
|
|
|
|
|
|
|
x_test = x_test.drop(["nazwa_stacji", "typ_zbioru"], axis=1)
|
|
|
|
x_test = pd.get_dummies(x_test, columns=["id_stacji", "rok", "miesiąc"])
|
2022-05-23 17:53:45 +02:00
|
|
|
poly = PolynomialFeatures(2, interaction_only=True)
|
2022-05-22 12:33:21 +02:00
|
|
|
x_test = x_test.iloc[:-8760]
|
2022-05-23 17:53:45 +02:00
|
|
|
x_test = poly.fit_transform(x_test)
|
2022-05-22 18:32:43 +02:00
|
|
|
# poly = PolynomialFeatures(2, interaction_only=True)
|
|
|
|
# x_test2 = poly.fit_transform(x_test)
|
2022-05-23 17:53:45 +02:00
|
|
|
# pred = model.predict(x_test)
|
|
|
|
test_A_predicted = regr_trans.predict(x_test)
|
|
|
|
|
2022-05-22 12:33:21 +02:00
|
|
|
|
2022-05-23 17:53:45 +02:00
|
|
|
out = pd.DataFrame(test_A_predicted)
|
2022-05-22 12:33:21 +02:00
|
|
|
out.to_csv("test-A/out.tsv", sep="\t", header=False, index=False)
|