test poly keras

This commit is contained in:
ZarebaMichal 2022-05-22 13:05:09 +02:00
parent e865273ec1
commit 6f3eeb63c4
2 changed files with 741 additions and 743 deletions

44
run2.py
View File

@ -21,29 +21,27 @@ from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(2, interaction_only=True)
df = poly.fit_transform(x)
pol_reg = LinearRegression()
pol_reg.fit(df, y)
# model = Sequential(
# [
# Dense(512, activation="relu", input_dim=73, kernel_regularizer="l2"),
# tensorflow.keras.layers.BatchNormalization(),
# Dense(512 // 2, activation="relu", kernel_regularizer="l2"),
# tensorflow.keras.layers.BatchNormalization(),
# Dense(512 // 4, activation="relu", kernel_regularizer="l2"),
# tensorflow.keras.layers.BatchNormalization(),
# Dense(512 // 8, activation="relu", kernel_regularizer="l2"),
# tensorflow.keras.layers.BatchNormalization(),
# Dense(32, activation="relu", kernel_regularizer="l2"),
# tensorflow.keras.layers.BatchNormalization(),
# Dense(1),
# ]
# )
#
# model.compile(
# loss="mean_squared_error", optimizer="adam", metrics=["mean_squared_error"]
# )
# model.fit(x, y, epochs=100)
model = Sequential(
[
Dense(512, activation="relu", input_dim=2702, kernel_regularizer="l2"),
tensorflow.keras.layers.BatchNormalization(),
Dense(512 // 2, activation="relu", kernel_regularizer="l2"),
tensorflow.keras.layers.BatchNormalization(),
Dense(512 // 4, activation="relu", kernel_regularizer="l2"),
tensorflow.keras.layers.BatchNormalization(),
Dense(512 // 8, activation="relu", kernel_regularizer="l2"),
tensorflow.keras.layers.BatchNormalization(),
Dense(32, activation="relu", kernel_regularizer="l2"),
tensorflow.keras.layers.BatchNormalization(),
Dense(1),
]
)
model.compile(
loss="mean_squared_error", optimizer="adam", metrics=["mean_squared_error"]
)
model.fit(df, y, epochs=100)
x_test = pd.read_csv("test-A/in.tsv", sep="\t", names=in_columns)
df_train = pd.read_csv("train/in.tsv", names=in_columns, sep="\t")
@ -55,7 +53,7 @@ x_test = pd.get_dummies(x_test, columns=["id_stacji", "rok", "miesiąc"])
x_test = x_test.iloc[:-8760]
poly = PolynomialFeatures(2, interaction_only=True)
x_test2 = poly.fit_transform(x_test)
pred = pol_reg.predict(x_test2)
pred = model.predict(x_test2)
out = pd.DataFrame(pred)
out.to_csv("test-A/out.tsv", sep="\t", header=False, index=False)

File diff suppressed because it is too large Load Diff