import pandas as pd import tensorflow.keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense in_columns = ["id_stacji", "nazwa_stacji", "typ_zbioru", "rok", "miesiąc"] df = pd.read_csv("train/in.tsv", names=in_columns, sep="\t") df_test = pd.read_csv("dev-0/in.tsv", names=in_columns, sep="\t") df = pd.concat([df, df_test]) df = df.drop(["nazwa_stacji", "typ_zbioru"], axis=1) x = pd.get_dummies(df, columns=["id_stacji", "rok", "miesiąc"]) x = x.iloc[:-600] y = pd.read_csv("train/expected.tsv", sep="\t", names=["rainfall"]) model = Sequential( [ Dense(512, activation="relu", input_dim=73), tensorflow.keras.layers.BatchNormalization(), Dense(512 // 2, activation="relu"), tensorflow.keras.layers.BatchNormalization(), Dense(512 // 4, activation="relu"), tensorflow.keras.layers.BatchNormalization(), Dense(512 // 8, activation="relu"), tensorflow.keras.layers.BatchNormalization(), Dense(32, activation="relu"), tensorflow.keras.layers.BatchNormalization(), Dense(1), ] ) model.compile( loss="mean_squared_error", optimizer="adam", metrics=["mean_squared_error"] ) model.fit(x, y, epochs=100) x_test = pd.read_csv("test-A/in.tsv", sep="\t", names=in_columns) df_train = pd.read_csv("train/in.tsv", names=in_columns, sep="\t") x_test = pd.concat([x_test, df_train]) x_test = x_test.drop(["nazwa_stacji", "typ_zbioru"], axis=1) x_test = pd.get_dummies(x_test, columns=["id_stacji", "rok", "miesiąc"]) x_test = x_test.iloc[:-8760] pred = model.predict(x_test) out = pd.DataFrame(pred) out.to_csv("test-A/out.tsv", sep="\t", header=False, index=False)