WSR-432813/.ipynb_checkpoints/P3. k-nearest neighbours-checkpoint.ipynb

1370 lines
56 KiB
Plaintext
Raw Normal View History

2021-06-11 01:28:24 +02:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Self made simplified I-KNN"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"import helpers\n",
"import pandas as pd\n",
"import numpy as np\n",
"import scipy.sparse as sparse\n",
"from collections import defaultdict\n",
"from itertools import chain\n",
"import random\n",
"\n",
"train_read = pd.read_csv(\"./Datasets/ml-100k/train.csv\", sep=\"\\t\", header=None)\n",
"test_read = pd.read_csv(\"./Datasets/ml-100k/test.csv\", sep=\"\\t\", header=None)\n",
"(\n",
" train_ui,\n",
" test_ui,\n",
" user_code_id,\n",
" user_id_code,\n",
" item_code_id,\n",
" item_id_code,\n",
") = helpers.data_to_csr(train_read, test_read)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"class IKNN:\n",
" def fit(self, train_ui):\n",
" self.train_ui = train_ui\n",
"\n",
" train_iu = train_ui.transpose()\n",
" norms = np.linalg.norm(\n",
" train_iu.A, axis=1\n",
" ) # here we compute length of each item ratings vector\n",
" norms = np.vectorize(lambda x: max(x, 1))(\n",
" norms[:, None]\n",
" ) # to avoid dividing by zero\n",
"\n",
" normalized_train_iu = sparse.csr_matrix(train_iu / norms)\n",
"\n",
" self.similarity_matrix_ii = (\n",
" normalized_train_iu * normalized_train_iu.transpose()\n",
" )\n",
"\n",
" self.estimations = np.array(\n",
" train_ui\n",
" * self.similarity_matrix_ii\n",
" / ((train_ui > 0) * self.similarity_matrix_ii)\n",
" )\n",
"\n",
" def recommend(self, user_code_id, item_code_id, topK=10):\n",
"\n",
" top_k = defaultdict(list)\n",
" for nb_user, user in enumerate(self.estimations):\n",
"\n",
" user_rated = self.train_ui.indices[\n",
" self.train_ui.indptr[nb_user] : self.train_ui.indptr[nb_user + 1]\n",
" ]\n",
" for item, score in enumerate(user):\n",
" if item not in user_rated and not np.isnan(score):\n",
" top_k[user_code_id[nb_user]].append((item_code_id[item], score))\n",
" result = []\n",
" # Let's choose k best items in the format: (user, item1, score1, item2, score2, ...)\n",
" for uid, item_scores in top_k.items():\n",
" item_scores.sort(key=lambda x: x[1], reverse=True)\n",
" result.append([uid] + list(chain(*item_scores[:topK])))\n",
" return result\n",
"\n",
" def estimate(self, user_code_id, item_code_id, test_ui):\n",
" result = []\n",
" for user, item in zip(*test_ui.nonzero()):\n",
" result.append(\n",
" [\n",
" user_code_id[user],\n",
" item_code_id[item],\n",
" self.estimations[user, item]\n",
" if not np.isnan(self.estimations[user, item])\n",
" else 1,\n",
" ]\n",
" )\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"toy train ui:\n"
]
},
{
"data": {
"text/plain": [
"array([[3, 4, 0, 0, 5, 0, 0, 4],\n",
" [0, 1, 2, 3, 0, 0, 0, 0],\n",
" [0, 0, 0, 5, 0, 3, 4, 0]])"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"similarity matrix:\n"
]
},
{
"data": {
"text/plain": [
"array([[1. , 0.9701425 , 0. , 0. , 1. ,\n",
" 0. , 0. , 1. ],\n",
" [0.9701425 , 1. , 0.24253563, 0.12478355, 0.9701425 ,\n",
" 0. , 0. , 0.9701425 ],\n",
" [0. , 0.24253563, 1. , 0.51449576, 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0.12478355, 0.51449576, 1. , 0. ,\n",
" 0.85749293, 0.85749293, 0. ],\n",
" [1. , 0.9701425 , 0. , 0. , 1. ,\n",
" 0. , 0. , 1. ],\n",
" [0. , 0. , 0. , 0.85749293, 0. ,\n",
" 1. , 1. , 0. ],\n",
" [0. , 0. , 0. , 0.85749293, 0. ,\n",
" 1. , 1. , 0. ],\n",
" [1. , 0.9701425 , 0. , 0. , 1. ,\n",
" 0. , 0. , 1. ]])"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"estimations matrix:\n"
]
},
{
"data": {
"text/plain": [
"array([[4. , 4. , 4. , 4. , 4. ,\n",
" nan, nan, 4. ],\n",
" [1. , 1.35990333, 2.15478388, 2.53390319, 1. ,\n",
" 3. , 3. , 1. ],\n",
" [ nan, 5. , 5. , 4.05248907, nan,\n",
" 3.95012863, 3.95012863, nan]])"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"[[0, 20, 4.0, 30, 4.0],\n",
" [10, 50, 3.0, 60, 3.0, 0, 1.0, 40, 1.0, 70, 1.0],\n",
" [20, 10, 5.0, 20, 5.0]]"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# toy example\n",
"toy_train_read = pd.read_csv(\n",
" \"./Datasets/toy-example/train.csv\",\n",
" sep=\"\\t\",\n",
" header=None,\n",
" names=[\"user\", \"item\", \"rating\", \"timestamp\"],\n",
")\n",
"toy_test_read = pd.read_csv(\n",
" \"./Datasets/toy-example/test.csv\",\n",
" sep=\"\\t\",\n",
" header=None,\n",
" names=[\"user\", \"item\", \"rating\", \"timestamp\"],\n",
")\n",
"\n",
"(\n",
" toy_train_ui,\n",
" toy_test_ui,\n",
" toy_user_code_id,\n",
" toy_user_id_code,\n",
" toy_item_code_id,\n",
" toy_item_id_code,\n",
") = helpers.data_to_csr(toy_train_read, toy_test_read)\n",
"\n",
"\n",
"model = IKNN()\n",
"model.fit(toy_train_ui)\n",
"\n",
"print(\"toy train ui:\")\n",
"display(toy_train_ui.A)\n",
"\n",
"print(\"similarity matrix:\")\n",
"display(model.similarity_matrix_ii.A)\n",
"\n",
"print(\"estimations matrix:\")\n",
"display(model.estimations)\n",
"\n",
"model.recommend(toy_user_code_id, toy_item_code_id)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"model = IKNN()\n",
"model.fit(train_ui)\n",
"\n",
"top_n = pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))\n",
"\n",
"top_n.to_csv(\n",
" \"Recommendations generated/ml-100k/Self_IKNN_reco.csv\", index=False, header=False\n",
")\n",
"\n",
"estimations = pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))\n",
"estimations.to_csv(\n",
" \"Recommendations generated/ml-100k/Self_IKNN_estimations.csv\",\n",
" index=False,\n",
" header=False,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 8576.73it/s]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" <th>H2R</th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.018363</td>\n",
" <td>0.808793</td>\n",
" <td>0.000318</td>\n",
" <td>0.000108</td>\n",
" <td>0.00014</td>\n",
" <td>0.000189</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000214</td>\n",
" <td>0.000037</td>\n",
" <td>0.000368</td>\n",
" <td>0.496391</td>\n",
" <td>0.003181</td>\n",
" <td>0.0</td>\n",
" <td>0.392153</td>\n",
" <td>0.11544</td>\n",
" <td>4.174741</td>\n",
" <td>0.965327</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" RMSE MAE precision recall F_1 F_05 \\\n",
"0 1.018363 0.808793 0.000318 0.000108 0.00014 0.000189 \n",
"\n",
" precision_super recall_super NDCG mAP MRR LAUC \\\n",
"0 0.0 0.0 0.000214 0.000037 0.000368 0.496391 \n",
"\n",
" HR H2R Reco in test Test coverage Shannon Gini \n",
"0 0.003181 0.0 0.392153 0.11544 4.174741 0.965327 "
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import evaluation_measures as ev\n",
"\n",
"estimations_df = pd.read_csv(\n",
" \"Recommendations generated/ml-100k/Self_IKNN_estimations.csv\", header=None\n",
")\n",
"reco = np.loadtxt(\"Recommendations generated/ml-100k/Self_IKNN_reco.csv\", delimiter=\",\")\n",
"\n",
"ev.evaluate(\n",
" test=pd.read_csv(\"./Datasets/ml-100k/test.csv\", sep=\"\\t\", header=None),\n",
" estimations_df=estimations_df,\n",
" reco=reco,\n",
" super_reactions=[4, 5],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 7330.28it/s]\n",
"943it [00:00, 7827.86it/s]\n",
"943it [00:00, 8071.29it/s]\n",
"943it [00:00, 8658.58it/s]\n",
"943it [00:00, 8305.62it/s]\n",
"943it [00:00, 8619.80it/s]\n",
"943it [00:00, 8313.50it/s]\n",
"943it [00:00, 8324.13it/s]\n",
"943it [00:00, 8154.03it/s]\n",
"943it [00:00, 7567.74it/s]\n",
"943it [00:00, 7721.03it/s]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Model</th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" <th>H2R</th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_TopPop</td>\n",
" <td>2.508258</td>\n",
" <td>2.217909</td>\n",
" <td>0.188865</td>\n",
" <td>0.116919</td>\n",
" <td>0.118732</td>\n",
" <td>0.141584</td>\n",
" <td>0.130472</td>\n",
" <td>0.137473</td>\n",
" <td>0.214651</td>\n",
" <td>0.111707</td>\n",
" <td>0.400939</td>\n",
" <td>0.555546</td>\n",
" <td>0.765642</td>\n",
" <td>0.492047</td>\n",
" <td>1.000000</td>\n",
" <td>0.038961</td>\n",
" <td>3.159079</td>\n",
" <td>0.987317</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_Baseline</td>\n",
" <td>0.949459</td>\n",
" <td>0.752487</td>\n",
" <td>0.091410</td>\n",
" <td>0.037652</td>\n",
" <td>0.046030</td>\n",
" <td>0.061286</td>\n",
" <td>0.079614</td>\n",
" <td>0.056463</td>\n",
" <td>0.095957</td>\n",
" <td>0.043178</td>\n",
" <td>0.198193</td>\n",
" <td>0.515501</td>\n",
" <td>0.437964</td>\n",
" <td>0.239661</td>\n",
" <td>1.000000</td>\n",
" <td>0.033911</td>\n",
" <td>2.836513</td>\n",
" <td>0.991139</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_KNNSurprisetask</td>\n",
" <td>0.946255</td>\n",
" <td>0.745209</td>\n",
" <td>0.083457</td>\n",
" <td>0.032848</td>\n",
" <td>0.041227</td>\n",
" <td>0.055493</td>\n",
" <td>0.074785</td>\n",
" <td>0.048890</td>\n",
" <td>0.089577</td>\n",
" <td>0.040902</td>\n",
" <td>0.189057</td>\n",
" <td>0.513076</td>\n",
" <td>0.417815</td>\n",
" <td>0.217391</td>\n",
" <td>0.888547</td>\n",
" <td>0.130592</td>\n",
" <td>3.611806</td>\n",
" <td>0.978659</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_GlobalAvg</td>\n",
" <td>1.125760</td>\n",
" <td>0.943534</td>\n",
" <td>0.061188</td>\n",
" <td>0.025968</td>\n",
" <td>0.031383</td>\n",
" <td>0.041343</td>\n",
" <td>0.040558</td>\n",
" <td>0.032107</td>\n",
" <td>0.067695</td>\n",
" <td>0.027470</td>\n",
" <td>0.171187</td>\n",
" <td>0.509546</td>\n",
" <td>0.384942</td>\n",
" <td>0.142100</td>\n",
" <td>1.000000</td>\n",
" <td>0.025974</td>\n",
" <td>2.711772</td>\n",
" <td>0.992003</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_Random</td>\n",
" <td>1.528005</td>\n",
" <td>1.227604</td>\n",
" <td>0.042842</td>\n",
" <td>0.019173</td>\n",
" <td>0.022234</td>\n",
" <td>0.028926</td>\n",
" <td>0.026502</td>\n",
" <td>0.019532</td>\n",
" <td>0.044202</td>\n",
" <td>0.015665</td>\n",
" <td>0.107737</td>\n",
" <td>0.506081</td>\n",
" <td>0.313892</td>\n",
" <td>0.080594</td>\n",
" <td>0.986108</td>\n",
" <td>0.182540</td>\n",
" <td>5.094973</td>\n",
" <td>0.907749</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_I-KNN</td>\n",
" <td>1.030386</td>\n",
" <td>0.813067</td>\n",
" <td>0.026087</td>\n",
" <td>0.006908</td>\n",
" <td>0.010593</td>\n",
" <td>0.016046</td>\n",
" <td>0.021137</td>\n",
" <td>0.009522</td>\n",
" <td>0.024214</td>\n",
" <td>0.008958</td>\n",
" <td>0.048068</td>\n",
" <td>0.499885</td>\n",
" <td>0.154825</td>\n",
" <td>0.072110</td>\n",
" <td>0.402333</td>\n",
" <td>0.434343</td>\n",
" <td>5.133650</td>\n",
" <td>0.877999</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_I-KNNBaseline</td>\n",
" <td>0.935327</td>\n",
" <td>0.737424</td>\n",
" <td>0.002545</td>\n",
" <td>0.000755</td>\n",
" <td>0.001105</td>\n",
" <td>0.001602</td>\n",
" <td>0.002253</td>\n",
" <td>0.000930</td>\n",
" <td>0.003444</td>\n",
" <td>0.001362</td>\n",
" <td>0.011760</td>\n",
" <td>0.496724</td>\n",
" <td>0.021209</td>\n",
" <td>0.004242</td>\n",
" <td>0.482821</td>\n",
" <td>0.059885</td>\n",
" <td>2.232578</td>\n",
" <td>0.994487</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_U-KNN</td>\n",
" <td>1.023495</td>\n",
" <td>0.807913</td>\n",
" <td>0.000742</td>\n",
" <td>0.000205</td>\n",
" <td>0.000305</td>\n",
" <td>0.000449</td>\n",
" <td>0.000536</td>\n",
" <td>0.000198</td>\n",
" <td>0.000845</td>\n",
" <td>0.000274</td>\n",
" <td>0.002744</td>\n",
" <td>0.496441</td>\n",
" <td>0.007423</td>\n",
" <td>0.000000</td>\n",
" <td>0.602121</td>\n",
" <td>0.010823</td>\n",
" <td>2.089186</td>\n",
" <td>0.995706</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_TopRated</td>\n",
" <td>1.030712</td>\n",
" <td>0.820904</td>\n",
" <td>0.000954</td>\n",
" <td>0.000188</td>\n",
" <td>0.000298</td>\n",
" <td>0.000481</td>\n",
" <td>0.000644</td>\n",
" <td>0.000223</td>\n",
" <td>0.001043</td>\n",
" <td>0.000335</td>\n",
" <td>0.003348</td>\n",
" <td>0.496433</td>\n",
" <td>0.009544</td>\n",
" <td>0.000000</td>\n",
" <td>0.699046</td>\n",
" <td>0.005051</td>\n",
" <td>1.945910</td>\n",
" <td>0.995669</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_BaselineUI</td>\n",
" <td>0.967585</td>\n",
" <td>0.762740</td>\n",
" <td>0.000954</td>\n",
" <td>0.000170</td>\n",
" <td>0.000278</td>\n",
" <td>0.000463</td>\n",
" <td>0.000644</td>\n",
" <td>0.000189</td>\n",
" <td>0.000752</td>\n",
" <td>0.000168</td>\n",
" <td>0.001677</td>\n",
" <td>0.496424</td>\n",
" <td>0.009544</td>\n",
" <td>0.000000</td>\n",
" <td>0.600530</td>\n",
" <td>0.005051</td>\n",
" <td>1.803126</td>\n",
" <td>0.996380</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_IKNN</td>\n",
" <td>1.018363</td>\n",
" <td>0.808793</td>\n",
" <td>0.000318</td>\n",
" <td>0.000108</td>\n",
" <td>0.000140</td>\n",
" <td>0.000189</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000214</td>\n",
" <td>0.000037</td>\n",
" <td>0.000368</td>\n",
" <td>0.496391</td>\n",
" <td>0.003181</td>\n",
" <td>0.000000</td>\n",
" <td>0.392153</td>\n",
" <td>0.115440</td>\n",
" <td>4.174741</td>\n",
" <td>0.965327</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Model RMSE MAE precision recall F_1 \\\n",
"0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n",
"0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n",
"0 Self_KNNSurprisetask 0.946255 0.745209 0.083457 0.032848 0.041227 \n",
"0 Self_GlobalAvg 1.125760 0.943534 0.061188 0.025968 0.031383 \n",
"0 Ready_Random 1.528005 1.227604 0.042842 0.019173 0.022234 \n",
"0 Ready_I-KNN 1.030386 0.813067 0.026087 0.006908 0.010593 \n",
"0 Ready_I-KNNBaseline 0.935327 0.737424 0.002545 0.000755 0.001105 \n",
"0 Ready_U-KNN 1.023495 0.807913 0.000742 0.000205 0.000305 \n",
"0 Self_TopRated 1.030712 0.820904 0.000954 0.000188 0.000298 \n",
"0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 \n",
"0 Self_IKNN 1.018363 0.808793 0.000318 0.000108 0.000140 \n",
"\n",
" F_05 precision_super recall_super NDCG mAP MRR \\\n",
"0 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 \n",
"0 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 \n",
"0 0.055493 0.074785 0.048890 0.089577 0.040902 0.189057 \n",
"0 0.041343 0.040558 0.032107 0.067695 0.027470 0.171187 \n",
"0 0.028926 0.026502 0.019532 0.044202 0.015665 0.107737 \n",
"0 0.016046 0.021137 0.009522 0.024214 0.008958 0.048068 \n",
"0 0.001602 0.002253 0.000930 0.003444 0.001362 0.011760 \n",
"0 0.000449 0.000536 0.000198 0.000845 0.000274 0.002744 \n",
"0 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 \n",
"0 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 \n",
"0 0.000189 0.000000 0.000000 0.000214 0.000037 0.000368 \n",
"\n",
" LAUC HR H2R Reco in test Test coverage Shannon \\\n",
"0 0.555546 0.765642 0.492047 1.000000 0.038961 3.159079 \n",
"0 0.515501 0.437964 0.239661 1.000000 0.033911 2.836513 \n",
"0 0.513076 0.417815 0.217391 0.888547 0.130592 3.611806 \n",
"0 0.509546 0.384942 0.142100 1.000000 0.025974 2.711772 \n",
"0 0.506081 0.313892 0.080594 0.986108 0.182540 5.094973 \n",
"0 0.499885 0.154825 0.072110 0.402333 0.434343 5.133650 \n",
"0 0.496724 0.021209 0.004242 0.482821 0.059885 2.232578 \n",
"0 0.496441 0.007423 0.000000 0.602121 0.010823 2.089186 \n",
"0 0.496433 0.009544 0.000000 0.699046 0.005051 1.945910 \n",
"0 0.496424 0.009544 0.000000 0.600530 0.005051 1.803126 \n",
"0 0.496391 0.003181 0.000000 0.392153 0.115440 4.174741 \n",
"\n",
" Gini \n",
"0 0.987317 \n",
"0 0.991139 \n",
"0 0.978659 \n",
"0 0.992003 \n",
"0 0.907749 \n",
"0 0.877999 \n",
"0 0.994487 \n",
"0 0.995706 \n",
"0 0.995669 \n",
"0 0.996380 \n",
"0 0.965327 "
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dir_path = \"Recommendations generated/ml-100k/\"\n",
"super_reactions = [4, 5]\n",
"test = pd.read_csv(\"./Datasets/ml-100k/test.csv\", sep=\"\\t\", header=None)\n",
"\n",
"ev.evaluate_all(test, dir_path, super_reactions)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ready-made KNNs - Surprise implementation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### I-KNN - basic"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Computing the cosine similarity matrix...\n",
"Done computing similarity matrix.\n",
"Generating predictions...\n",
"Generating top N recommendations...\n",
"Generating predictions...\n"
]
}
],
"source": [
"import helpers\n",
"import surprise as sp\n",
"\n",
"sim_options = {\n",
" \"name\": \"cosine\",\n",
" \"user_based\": False,\n",
"} # compute similarities between items\n",
"algo = sp.KNNBasic(sim_options=sim_options)\n",
"\n",
"helpers.ready_made(\n",
" algo,\n",
" reco_path=\"Recommendations generated/ml-100k/Ready_I-KNN_reco.csv\",\n",
" estimations_path=\"Recommendations generated/ml-100k/Ready_I-KNN_estimations.csv\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### U-KNN - basic"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Computing the cosine similarity matrix...\n",
"Done computing similarity matrix.\n",
"Generating predictions...\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-25-925aeb5e3f18>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0malgo\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mreco_path\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"Recommendations generated/ml-100k/Ready_U-KNN_reco.csv\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mestimations_path\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"Recommendations generated/ml-100k/Ready_U-KNN_estimations.csv\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m )\n",
"\u001b[0;32m~/Desktop/helpers.py\u001b[0m in \u001b[0;36mready_made\u001b[0;34m(algo, reco_path, estimations_path)\u001b[0m\n\u001b[1;32m 64\u001b[0m \u001b[0mantitrainset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrainset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuild_anti_testset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# We want to predict ratings of pairs (user, item) which are not in train set\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Generating predictions...'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 66\u001b[0;31m \u001b[0mpredictions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0malgo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtest\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mantitrainset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 67\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Generating top N recommendations...'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0mtop_n\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_top_n\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpredictions\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mn\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.7/site-packages/surprise/prediction_algorithms/algo_base.py\u001b[0m in \u001b[0;36mtest\u001b[0;34m(self, testset, verbose)\u001b[0m\n\u001b[1;32m 166\u001b[0m \u001b[0mr_ui_trans\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 167\u001b[0m verbose=verbose)\n\u001b[0;32m--> 168\u001b[0;31m for (uid, iid, r_ui_trans) in testset]\n\u001b[0m\u001b[1;32m 169\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpredictions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 170\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.7/site-packages/surprise/prediction_algorithms/algo_base.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 166\u001b[0m \u001b[0mr_ui_trans\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 167\u001b[0m verbose=verbose)\n\u001b[0;32m--> 168\u001b[0;31m for (uid, iid, r_ui_trans) in testset]\n\u001b[0m\u001b[1;32m 169\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpredictions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 170\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.7/site-packages/surprise/prediction_algorithms/algo_base.py\u001b[0m in \u001b[0;36mpredict\u001b[0;34m(self, uid, iid, r_ui, clip, verbose)\u001b[0m\n\u001b[1;32m 104\u001b[0m \u001b[0mdetails\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 105\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 106\u001b[0;31m \u001b[0mest\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mestimate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miuid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0miiid\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 107\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 108\u001b[0m \u001b[0;31m# If the details dict was also returned\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.7/site-packages/surprise/prediction_algorithms/knns.py\u001b[0m in \u001b[0;36mestimate\u001b[0;34m(self, u, i)\u001b[0m\n\u001b[1;32m 109\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[0mneighbors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msim\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mx2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0myr\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 111\u001b[0;31m \u001b[0mk_neighbors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mheapq\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlargest\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mneighbors\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 112\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[0;31m# compute weighted average\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python3.7/heapq.py\u001b[0m in \u001b[0;36mnlargest\u001b[0;34m(n, iterable, key)\u001b[0m\n\u001b[1;32m 567\u001b[0m \u001b[0;31m# General case, slowest method\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 568\u001b[0m \u001b[0mit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0miter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 569\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0melem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0melem\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0melem\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mit\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 570\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 571\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python3.7/heapq.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 567\u001b[0m \u001b[0;31m# General case, slowest method\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 568\u001b[0m \u001b[0mit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0miter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 569\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0melem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0melem\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0melem\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mit\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 570\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 571\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"sim_options = {\n",
" \"name\": \"cosine\",\n",
" \"user_based\": True,\n",
"} # compute similarities between users\n",
"algo = sp.KNNBasic(sim_options=sim_options)\n",
"\n",
"helpers.ready_made(\n",
" algo,\n",
" reco_path=\"Recommendations generated/ml-100k/Ready_U-KNN_reco.csv\",\n",
" estimations_path=\"Recommendations generated/ml-100k/Ready_U-KNN_estimations.csv\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### I-KNN - on top baseline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sim_options = {\n",
" \"name\": \"cosine\",\n",
" \"user_based\": False,\n",
"} # compute similarities between items\n",
"algo = sp.KNNBaseline()\n",
"\n",
"helpers.ready_made(\n",
" algo,\n",
" reco_path=\"Recommendations generated/ml-100k/Ready_I-KNNBaseline_reco.csv\",\n",
" estimations_path=\"Recommendations generated/ml-100k/Ready_I-KNNBaseline_estimations.csv\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dir_path = \"Recommendations generated/ml-100k/\"\n",
"super_reactions = [4, 5]\n",
"test = pd.read_csv(\"./Datasets/ml-100k/test.csv\", sep=\"\\t\", header=None)\n",
"\n",
"ev.evaluate_all(test, dir_path, super_reactions)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# project task 3: use a version of your choice of Surprise KNNalgorithm"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# read the docs and try to find best parameter configuration (let say in terms of RMSE)\n",
"# https://surprise.readthedocs.io/en/stable/knn_inspired.html##surprise.prediction_algorithms.knns.KNNBaseline\n",
"# the solution here can be similar to examples above\n",
"# please save the output in 'Recommendations generated/ml-100k/Self_KNNSurprisetask_reco.csv' and\n",
"# 'Recommendations generated/ml-100k/Self_KNNSurprisetask_estimations.csv'"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Computing the cosine similarity matrix...\n",
"Done computing similarity matrix.\n",
"Generating predictions...\n",
"Generating top N recommendations...\n",
"Generating predictions...\n"
]
}
],
"source": [
"import helpers\n",
"import surprise as sp\n",
"import imp\n",
"import evaluation_measures as ev\n",
"\n",
"sim_options = {\n",
" \"name\": \"cosine\",\n",
" \"user_based\": False,\n",
"} # compute similarities between items\n",
"algo = sp.KNNWithZScore(k=40, sim_options=sim_options)\n",
"\n",
"helpers.ready_made(\n",
" algo, \n",
" reco_path='Recommendations generated/ml-100k/Ready_I-KNNWithZScore_reco.csv',\n",
" estimations_path='Recommendations generated/ml-100k/Ready_I-KNNWithZScore_estimations.csv')"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 8503.18it/s]\n",
"943it [00:00, 8069.90it/s]\n",
"943it [00:00, 7330.46it/s]\n",
"943it [00:00, 8456.26it/s]\n",
"943it [00:00, 8289.09it/s]\n",
"943it [00:00, 8115.60it/s]\n",
"943it [00:00, 8452.48it/s]\n",
"943it [00:00, 8448.04it/s]\n",
"943it [00:00, 8171.91it/s]\n",
"943it [00:00, 7235.55it/s]\n",
"943it [00:00, 7667.03it/s]\n",
"943it [00:00, 7646.62it/s]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Model</th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" <th>H2R</th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_TopPop</td>\n",
" <td>2.508258</td>\n",
" <td>2.217909</td>\n",
" <td>0.188865</td>\n",
" <td>0.116919</td>\n",
" <td>0.118732</td>\n",
" <td>0.141584</td>\n",
" <td>0.130472</td>\n",
" <td>0.137473</td>\n",
" <td>0.214651</td>\n",
" <td>0.111707</td>\n",
" <td>0.400939</td>\n",
" <td>0.555546</td>\n",
" <td>0.765642</td>\n",
" <td>0.492047</td>\n",
" <td>1.000000</td>\n",
" <td>0.038961</td>\n",
" <td>3.159079</td>\n",
" <td>0.987317</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_Baseline</td>\n",
" <td>0.949459</td>\n",
" <td>0.752487</td>\n",
" <td>0.091410</td>\n",
" <td>0.037652</td>\n",
" <td>0.046030</td>\n",
" <td>0.061286</td>\n",
" <td>0.079614</td>\n",
" <td>0.056463</td>\n",
" <td>0.095957</td>\n",
" <td>0.043178</td>\n",
" <td>0.198193</td>\n",
" <td>0.515501</td>\n",
" <td>0.437964</td>\n",
" <td>0.239661</td>\n",
" <td>1.000000</td>\n",
" <td>0.033911</td>\n",
" <td>2.836513</td>\n",
" <td>0.991139</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_KNNSurprisetask</td>\n",
" <td>0.946255</td>\n",
" <td>0.745209</td>\n",
" <td>0.083457</td>\n",
" <td>0.032848</td>\n",
" <td>0.041227</td>\n",
" <td>0.055493</td>\n",
" <td>0.074785</td>\n",
" <td>0.048890</td>\n",
" <td>0.089577</td>\n",
" <td>0.040902</td>\n",
" <td>0.189057</td>\n",
" <td>0.513076</td>\n",
" <td>0.417815</td>\n",
" <td>0.217391</td>\n",
" <td>0.888547</td>\n",
" <td>0.130592</td>\n",
" <td>3.611806</td>\n",
" <td>0.978659</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_GlobalAvg</td>\n",
" <td>1.125760</td>\n",
" <td>0.943534</td>\n",
" <td>0.061188</td>\n",
" <td>0.025968</td>\n",
" <td>0.031383</td>\n",
" <td>0.041343</td>\n",
" <td>0.040558</td>\n",
" <td>0.032107</td>\n",
" <td>0.067695</td>\n",
" <td>0.027470</td>\n",
" <td>0.171187</td>\n",
" <td>0.509546</td>\n",
" <td>0.384942</td>\n",
" <td>0.142100</td>\n",
" <td>1.000000</td>\n",
" <td>0.025974</td>\n",
" <td>2.711772</td>\n",
" <td>0.992003</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_Random</td>\n",
" <td>1.528005</td>\n",
" <td>1.227604</td>\n",
" <td>0.042842</td>\n",
" <td>0.019173</td>\n",
" <td>0.022234</td>\n",
" <td>0.028926</td>\n",
" <td>0.026502</td>\n",
" <td>0.019532</td>\n",
" <td>0.044202</td>\n",
" <td>0.015665</td>\n",
" <td>0.107737</td>\n",
" <td>0.506081</td>\n",
" <td>0.313892</td>\n",
" <td>0.080594</td>\n",
" <td>0.986108</td>\n",
" <td>0.182540</td>\n",
" <td>5.094973</td>\n",
" <td>0.907749</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_I-KNN</td>\n",
" <td>1.030386</td>\n",
" <td>0.813067</td>\n",
" <td>0.026087</td>\n",
" <td>0.006908</td>\n",
" <td>0.010593</td>\n",
" <td>0.016046</td>\n",
" <td>0.021137</td>\n",
" <td>0.009522</td>\n",
" <td>0.024214</td>\n",
" <td>0.008958</td>\n",
" <td>0.048068</td>\n",
" <td>0.499885</td>\n",
" <td>0.154825</td>\n",
" <td>0.072110</td>\n",
" <td>0.402333</td>\n",
" <td>0.434343</td>\n",
" <td>5.133650</td>\n",
" <td>0.877999</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_I-KNNWithZScore</td>\n",
" <td>0.950328</td>\n",
" <td>0.745109</td>\n",
" <td>0.003924</td>\n",
" <td>0.001466</td>\n",
" <td>0.001953</td>\n",
" <td>0.002652</td>\n",
" <td>0.003433</td>\n",
" <td>0.001608</td>\n",
" <td>0.004968</td>\n",
" <td>0.002111</td>\n",
" <td>0.014694</td>\n",
" <td>0.497085</td>\n",
" <td>0.029692</td>\n",
" <td>0.006363</td>\n",
" <td>0.574019</td>\n",
" <td>0.065657</td>\n",
" <td>2.646787</td>\n",
" <td>0.991825</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_I-KNNBaseline</td>\n",
" <td>0.935327</td>\n",
" <td>0.737424</td>\n",
" <td>0.002545</td>\n",
" <td>0.000755</td>\n",
" <td>0.001105</td>\n",
" <td>0.001602</td>\n",
" <td>0.002253</td>\n",
" <td>0.000930</td>\n",
" <td>0.003444</td>\n",
" <td>0.001362</td>\n",
" <td>0.011760</td>\n",
" <td>0.496724</td>\n",
" <td>0.021209</td>\n",
" <td>0.004242</td>\n",
" <td>0.482821</td>\n",
" <td>0.059885</td>\n",
" <td>2.232578</td>\n",
" <td>0.994487</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_U-KNN</td>\n",
" <td>1.023495</td>\n",
" <td>0.807913</td>\n",
" <td>0.000742</td>\n",
" <td>0.000205</td>\n",
" <td>0.000305</td>\n",
" <td>0.000449</td>\n",
" <td>0.000536</td>\n",
" <td>0.000198</td>\n",
" <td>0.000845</td>\n",
" <td>0.000274</td>\n",
" <td>0.002744</td>\n",
" <td>0.496441</td>\n",
" <td>0.007423</td>\n",
" <td>0.000000</td>\n",
" <td>0.602121</td>\n",
" <td>0.010823</td>\n",
" <td>2.089186</td>\n",
" <td>0.995706</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_TopRated</td>\n",
" <td>1.030712</td>\n",
" <td>0.820904</td>\n",
" <td>0.000954</td>\n",
" <td>0.000188</td>\n",
" <td>0.000298</td>\n",
" <td>0.000481</td>\n",
" <td>0.000644</td>\n",
" <td>0.000223</td>\n",
" <td>0.001043</td>\n",
" <td>0.000335</td>\n",
" <td>0.003348</td>\n",
" <td>0.496433</td>\n",
" <td>0.009544</td>\n",
" <td>0.000000</td>\n",
" <td>0.699046</td>\n",
" <td>0.005051</td>\n",
" <td>1.945910</td>\n",
" <td>0.995669</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_BaselineUI</td>\n",
" <td>0.967585</td>\n",
" <td>0.762740</td>\n",
" <td>0.000954</td>\n",
" <td>0.000170</td>\n",
" <td>0.000278</td>\n",
" <td>0.000463</td>\n",
" <td>0.000644</td>\n",
" <td>0.000189</td>\n",
" <td>0.000752</td>\n",
" <td>0.000168</td>\n",
" <td>0.001677</td>\n",
" <td>0.496424</td>\n",
" <td>0.009544</td>\n",
" <td>0.000000</td>\n",
" <td>0.600530</td>\n",
" <td>0.005051</td>\n",
" <td>1.803126</td>\n",
" <td>0.996380</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_IKNN</td>\n",
" <td>1.018363</td>\n",
" <td>0.808793</td>\n",
" <td>0.000318</td>\n",
" <td>0.000108</td>\n",
" <td>0.000140</td>\n",
" <td>0.000189</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000214</td>\n",
" <td>0.000037</td>\n",
" <td>0.000368</td>\n",
" <td>0.496391</td>\n",
" <td>0.003181</td>\n",
" <td>0.000000</td>\n",
" <td>0.392153</td>\n",
" <td>0.115440</td>\n",
" <td>4.174741</td>\n",
" <td>0.965327</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Model RMSE MAE precision recall F_1 \\\n",
"0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n",
"0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n",
"0 Self_KNNSurprisetask 0.946255 0.745209 0.083457 0.032848 0.041227 \n",
"0 Self_GlobalAvg 1.125760 0.943534 0.061188 0.025968 0.031383 \n",
"0 Ready_Random 1.528005 1.227604 0.042842 0.019173 0.022234 \n",
"0 Ready_I-KNN 1.030386 0.813067 0.026087 0.006908 0.010593 \n",
"0 Ready_I-KNNWithZScore 0.950328 0.745109 0.003924 0.001466 0.001953 \n",
"0 Ready_I-KNNBaseline 0.935327 0.737424 0.002545 0.000755 0.001105 \n",
"0 Ready_U-KNN 1.023495 0.807913 0.000742 0.000205 0.000305 \n",
"0 Self_TopRated 1.030712 0.820904 0.000954 0.000188 0.000298 \n",
"0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 \n",
"0 Self_IKNN 1.018363 0.808793 0.000318 0.000108 0.000140 \n",
"\n",
" F_05 precision_super recall_super NDCG mAP MRR \\\n",
"0 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 \n",
"0 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 \n",
"0 0.055493 0.074785 0.048890 0.089577 0.040902 0.189057 \n",
"0 0.041343 0.040558 0.032107 0.067695 0.027470 0.171187 \n",
"0 0.028926 0.026502 0.019532 0.044202 0.015665 0.107737 \n",
"0 0.016046 0.021137 0.009522 0.024214 0.008958 0.048068 \n",
"0 0.002652 0.003433 0.001608 0.004968 0.002111 0.014694 \n",
"0 0.001602 0.002253 0.000930 0.003444 0.001362 0.011760 \n",
"0 0.000449 0.000536 0.000198 0.000845 0.000274 0.002744 \n",
"0 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 \n",
"0 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 \n",
"0 0.000189 0.000000 0.000000 0.000214 0.000037 0.000368 \n",
"\n",
" LAUC HR H2R Reco in test Test coverage Shannon \\\n",
"0 0.555546 0.765642 0.492047 1.000000 0.038961 3.159079 \n",
"0 0.515501 0.437964 0.239661 1.000000 0.033911 2.836513 \n",
"0 0.513076 0.417815 0.217391 0.888547 0.130592 3.611806 \n",
"0 0.509546 0.384942 0.142100 1.000000 0.025974 2.711772 \n",
"0 0.506081 0.313892 0.080594 0.986108 0.182540 5.094973 \n",
"0 0.499885 0.154825 0.072110 0.402333 0.434343 5.133650 \n",
"0 0.497085 0.029692 0.006363 0.574019 0.065657 2.646787 \n",
"0 0.496724 0.021209 0.004242 0.482821 0.059885 2.232578 \n",
"0 0.496441 0.007423 0.000000 0.602121 0.010823 2.089186 \n",
"0 0.496433 0.009544 0.000000 0.699046 0.005051 1.945910 \n",
"0 0.496424 0.009544 0.000000 0.600530 0.005051 1.803126 \n",
"0 0.496391 0.003181 0.000000 0.392153 0.115440 4.174741 \n",
"\n",
" Gini \n",
"0 0.987317 \n",
"0 0.991139 \n",
"0 0.978659 \n",
"0 0.992003 \n",
"0 0.907749 \n",
"0 0.877999 \n",
"0 0.991825 \n",
"0 0.994487 \n",
"0 0.995706 \n",
"0 0.995669 \n",
"0 0.996380 \n",
"0 0.965327 "
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dir_path=\"Recommendations generated/ml-100k/\"\n",
"super_reactions=[4,5]\n",
"test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None)\n",
"\n",
"ev.evaluate_all(test, dir_path, super_reactions)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}