A* implementation
This commit is contained in:
parent
5a40f4eb81
commit
976a6ebfc2
120
Astar.py
Normal file
120
Astar.py
Normal file
@ -0,0 +1,120 @@
|
||||
class Node:
|
||||
"""A node class for A* Pathfinding"""
|
||||
|
||||
def __init__(self, parent=None, position=None):
|
||||
self.parent = parent
|
||||
self.position = position
|
||||
|
||||
self.g = 0
|
||||
self.h = 0
|
||||
self.f = 0
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.position == other.position
|
||||
|
||||
|
||||
def astar(maze, start, end):
|
||||
"""Returns a list of tuples as a path from the given start to the given end in the given maze"""
|
||||
|
||||
# Create start and end node
|
||||
start_node = Node(None, start)
|
||||
start_node.g = start_node.h = start_node.f = 0
|
||||
end_node = Node(None, end)
|
||||
end_node.g = end_node.h = end_node.f = 0
|
||||
|
||||
# Initialize both open and closed list
|
||||
open_list = []
|
||||
closed_list = []
|
||||
|
||||
# Add the start node
|
||||
open_list.append(start_node)
|
||||
|
||||
# Loop until you find the end
|
||||
while len(open_list) > 0:
|
||||
|
||||
# Get the current node
|
||||
current_node = open_list[0]
|
||||
current_index = 0
|
||||
for index, item in enumerate(open_list):
|
||||
if item.f < current_node.f:
|
||||
current_node = item
|
||||
current_index = index
|
||||
|
||||
# Pop current off open list, add to closed list
|
||||
open_list.pop(current_index)
|
||||
closed_list.append(current_node)
|
||||
|
||||
# Found the goal
|
||||
if current_node == end_node:
|
||||
path = []
|
||||
current = current_node
|
||||
while current is not None:
|
||||
path.append(current.position)
|
||||
current = current.parent
|
||||
return path[::-1] # Return reversed path
|
||||
|
||||
# Generate children
|
||||
children = []
|
||||
for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0)]: # Adjacent squares
|
||||
|
||||
# Get node position
|
||||
node_position = (current_node.position[0] + new_position[0], current_node.position[1] + new_position[1])
|
||||
|
||||
# Make sure within range
|
||||
if node_position[0] > (len(maze) - 1) or node_position[0] < 0 or node_position[1] > (len(maze[len(maze)-1]) -1) or node_position[1] < 0:
|
||||
continue
|
||||
|
||||
# Make sure walkable terrain
|
||||
if maze[node_position[0]][node_position[1]] != 0:
|
||||
continue
|
||||
|
||||
# Create new node
|
||||
new_node = Node(current_node, node_position)
|
||||
|
||||
# Append
|
||||
children.append(new_node)
|
||||
|
||||
# Loop through children
|
||||
for child in children:
|
||||
|
||||
# Child is on the closed list
|
||||
for closed_child in closed_list:
|
||||
if child == closed_child:
|
||||
continue
|
||||
|
||||
# Create the f, g, and h values
|
||||
child.g = current_node.g + 1
|
||||
child.h = ((child.position[0] - end_node.position[0]) ** 2) + ((child.position[1] - end_node.position[1]) ** 2)
|
||||
child.f = child.g + child.h
|
||||
|
||||
# Child is already in the open list
|
||||
for open_node in open_list:
|
||||
if child == open_node and child.g > open_node.g:
|
||||
continue
|
||||
|
||||
# Add the child to the open list
|
||||
open_list.append(child)
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
maze = [[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
|
||||
|
||||
start = (0, 0)
|
||||
end = (7, 6)
|
||||
|
||||
path = astar(maze, start, end)
|
||||
print(path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
43
agent.py
Normal file
43
agent.py
Normal file
@ -0,0 +1,43 @@
|
||||
import pygame as pg
|
||||
import sys
|
||||
import numpy as np
|
||||
from tile import Tile
|
||||
from config import *
|
||||
|
||||
|
||||
class Agent:
|
||||
def __init__(self):
|
||||
self.prev = (4, 4)
|
||||
self.pos = (4, 4)
|
||||
self.dir = "E"
|
||||
|
||||
def turn(self, a, b):
|
||||
x_mov = a[0] - b[0]
|
||||
y_mov = a[1] - b[1]
|
||||
if (x_mov, y_mov) == (0, 1):
|
||||
self.dir = "S"
|
||||
if (x_mov, y_mov) == (0, -1):
|
||||
self.dir = "N"
|
||||
if (x_mov, y_mov) == (1, 0):
|
||||
self.dir = "E"
|
||||
if (x_mov, y_mov) == (-1, 0):
|
||||
self.dir = "W"
|
||||
|
||||
def display(self, step=None):
|
||||
pg.time.delay(150)
|
||||
agent_img = pg.image.load('tractor.png').convert_alpha()
|
||||
if step is not None:
|
||||
self.prev = self.pos
|
||||
self.pos = step
|
||||
self.turn(self.pos, self.prev)
|
||||
if self.dir == "N":
|
||||
angle = 270
|
||||
elif self.dir == "E":
|
||||
angle = 180
|
||||
elif self.dir == "S":
|
||||
angle = 90
|
||||
elif self.dir == "W":
|
||||
angle = 0
|
||||
agent_img = pg.transform.rotate(agent_img, angle)
|
||||
screen.blit(agent_img, (self.pos[0] * tile_size, self.pos[1] * tile_size))
|
||||
pg.display.flip()
|
BIN
barn.png
BIN
barn.png
Binary file not shown.
Before Width: | Height: | Size: 4.8 KiB After Width: | Height: | Size: 4.4 KiB |
60
config.py
60
config.py
@ -1,38 +1,43 @@
|
||||
import pygame as pg
|
||||
import numpy as np
|
||||
|
||||
screen_height = 560
|
||||
screen_width = 700
|
||||
screen_height = 890
|
||||
screen_width = 720
|
||||
tile_size = 80
|
||||
|
||||
screen = pg.display.set_mode([screen_width, screen_height])
|
||||
black_surface = pg.Surface((720, 170))
|
||||
black_surface.fill((0, 0, 0))
|
||||
|
||||
# agent
|
||||
agent_img = pg.image.load('tractor.png').convert()
|
||||
# # agent
|
||||
# agent_img = pg.image.load('tractor.png').convert_alpha()
|
||||
|
||||
# background
|
||||
road = 0
|
||||
ground = 1
|
||||
wall = 2
|
||||
|
||||
bg_textures = {
|
||||
road: pg.image.load('road.png').convert(),
|
||||
ground: pg.image.load('ground.png').convert()}
|
||||
ground: pg.image.load('ground.png').convert(),
|
||||
wall: pg.image.load('wall.png').convert()}
|
||||
|
||||
background = np.array([[1, 1, 1, 0, 1, 1, 1],
|
||||
[1, 1, 1, 0, 1, 1, 1],
|
||||
[1, 1, 1, 0, 1, 1, 1],
|
||||
[0, 0, 0, 0, 0, 0, 0],
|
||||
[1, 1, 1, 0, 1, 1, 1],
|
||||
[1, 1, 1, 0, 1, 1, 1],
|
||||
[1, 1, 1, 0, 1, 1, 1]])
|
||||
background = np.array([[1, 1, 1, 0, 0, 0, 1, 1, 1],
|
||||
[1, 1, 1, 2, 0, 2, 1, 1, 1],
|
||||
[1, 1, 1, 2, 0, 2, 1, 1, 1],
|
||||
[0, 2, 2, 2, 0, 2, 2, 2, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 2, 2, 2, 0, 2, 2, 2, 0],
|
||||
[1, 1, 1, 2, 0, 2, 1, 1, 1],
|
||||
[1, 1, 1, 2, 0, 2, 1, 1, 1],
|
||||
[1, 1, 1, 0, 0, 0, 1, 1, 1]])
|
||||
|
||||
# objects
|
||||
rose = 2
|
||||
tulip = 3
|
||||
orchid = 4
|
||||
sunflower = 5
|
||||
barn = 6
|
||||
disease = 7
|
||||
rose = 3
|
||||
tulip = 4
|
||||
orchid = 5
|
||||
sunflower = 6
|
||||
barn = 7
|
||||
|
||||
ob_textures = {
|
||||
0: pg.image.load('none.png').convert_alpha(),
|
||||
@ -40,13 +45,14 @@ ob_textures = {
|
||||
tulip: pg.image.load('tulip.png').convert_alpha(),
|
||||
orchid: pg.image.load('orchid.png').convert_alpha(),
|
||||
sunflower: pg.image.load('sunflower.png').convert_alpha(),
|
||||
barn: pg.image.load('barn.png').convert(),
|
||||
disease: pg.image.load('disease.png').convert_alpha()}
|
||||
barn: pg.image.load('barn.png').convert()}
|
||||
|
||||
objects = np.array([[2, 2, 2, 0, 3, 3, 3],
|
||||
[2, 2, 2, 0, 3, 3, 3],
|
||||
[2, 2, 2, 0, 3, 3, 3],
|
||||
[0, 0, 0, 6, 0, 0, 0],
|
||||
[4, 4, 4, 0, 5, 5, 5],
|
||||
[4, 4, 4, 0, 5, 5, 5],
|
||||
[4, 4, 4, 0, 5, 5, 5]])
|
||||
objects = np.array([[3, 3, 3, 0, 0, 0, 4, 4, 4],
|
||||
[3, 3, 3, 0, 0, 0, 4, 4, 4],
|
||||
[3, 3, 3, 0, 0, 0, 4, 4, 4],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 7, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[5, 5, 5, 0, 0, 0, 6, 6, 6],
|
||||
[5, 5, 5, 0, 0, 0, 6, 6, 6],
|
||||
[5, 5, 5, 0, 0, 0, 6, 6, 6]])
|
||||
|
122
main.py
122
main.py
@ -3,36 +3,128 @@ import sys
|
||||
import numpy as np
|
||||
from tile import Tile
|
||||
from config import *
|
||||
from agent import Agent
|
||||
from Astar import *
|
||||
|
||||
done = False
|
||||
|
||||
clock = pg.time.Clock()
|
||||
pg.display.set_caption('Intelligent Tractor')
|
||||
tiles = []
|
||||
|
||||
for y in range(0, 7):
|
||||
for x in range(0, 7):
|
||||
t = Tile(background[x][y], objects[x][y], x, y)
|
||||
tiles.append(t)
|
||||
pg.init()
|
||||
pg.font.init()
|
||||
|
||||
|
||||
def display_background():
|
||||
for tile in tiles:
|
||||
class Game:
|
||||
def __init__(self):
|
||||
self.tiles = []
|
||||
self.water_lvl = []
|
||||
self.day = 1
|
||||
|
||||
for y in range(0, 9):
|
||||
for x in range(0, 9):
|
||||
pos = (x, y)
|
||||
t = Tile(background[x][y], objects[x][y], pos)
|
||||
t.water_usage()
|
||||
self.tiles.append(t)
|
||||
|
||||
def display_background(self):
|
||||
for tile in self.tiles:
|
||||
screen.blit(bg_textures[tile.ground], (tile.x * tile_size, tile.y * tile_size))
|
||||
|
||||
|
||||
def display_objects():
|
||||
for tile in tiles:
|
||||
def display_objects(self):
|
||||
for tile in self.tiles:
|
||||
screen.blit(ob_textures[tile.object], (tile.x * tile_size, tile.y * tile_size))
|
||||
pg.display.flip()
|
||||
|
||||
def display_legend(self):
|
||||
screen.blit(black_surface, (0, 720))
|
||||
self.water_lvl = []
|
||||
for tile in self.tiles:
|
||||
if tile.pos == (1, 1):
|
||||
rose_w = tile.w
|
||||
self.water_lvl.append((rose_w, (0, 3)))
|
||||
if tile.pos == (7, 1):
|
||||
orchid_w = tile.w
|
||||
self.water_lvl.append((orchid_w, (5, 0)))
|
||||
if tile.pos == (1, 7):
|
||||
tulip_w = tile.w
|
||||
self.water_lvl.append((tulip_w, (3, 8)))
|
||||
if tile.pos == (7, 7):
|
||||
sunflower_w = tile.w
|
||||
self.water_lvl.append((sunflower_w, (8, 5)))
|
||||
font = pg.font.SysFont('ubuntumono', 40)
|
||||
text = font.render("water levels", 1, (255, 255, 255))
|
||||
text1 = font.render("roses: " + str(rose_w) + "%", 1, (255, 255, 255))
|
||||
text2 = font.render("orchids: " + str(orchid_w) + "%", 1, (255, 255, 255))
|
||||
text3 = font.render("tulips: " + str(tulip_w) + "%", 1, (255, 255, 255))
|
||||
text4 = font.render("sunflowers: " + str(sunflower_w) + "%", 1, (255, 255, 255))
|
||||
text5 = font.render("day: " + str(self.day), 1, (255, 255, 255))
|
||||
screen.blit(text, (10, 720))
|
||||
screen.blit(text1, (10, 760))
|
||||
screen.blit(text2, (360, 760))
|
||||
screen.blit(text3, (10, 800))
|
||||
screen.blit(text4, (360, 800))
|
||||
screen.blit(text5, (10, 840))
|
||||
|
||||
def water_target(self):
|
||||
o = None
|
||||
for lvl in self.water_lvl:
|
||||
if lvl[0] < 10:
|
||||
o = lvl[1]
|
||||
break
|
||||
return o
|
||||
|
||||
def watering(self, plants):
|
||||
if plants == (0, 3):
|
||||
for tile in self.tiles:
|
||||
if tile.object == rose:
|
||||
tile.w = 100
|
||||
if plants == (5, 0):
|
||||
for tile in self.tiles:
|
||||
if tile.object == orchid:
|
||||
tile.w = 100
|
||||
if plants == (3, 8):
|
||||
for tile in self.tiles:
|
||||
if tile.object == tulip:
|
||||
tile.w = 100
|
||||
if plants == (8, 5):
|
||||
for tile in self.tiles:
|
||||
if tile.object == sunflower:
|
||||
tile.w = 100
|
||||
|
||||
def add_day(self):
|
||||
pg.time.delay(1000)
|
||||
self.day = self.day + 1
|
||||
for tile in self.tiles:
|
||||
tile.w = tile.w - tile.wu
|
||||
if tile.w < 0:
|
||||
tile.w = 0
|
||||
|
||||
|
||||
def game_loop():
|
||||
path = None
|
||||
g.display_background()
|
||||
g.display_objects()
|
||||
g.display_legend()
|
||||
if g.water_target() is None:
|
||||
g.add_day()
|
||||
else:
|
||||
path = astar(background, a.pos, g.water_target())
|
||||
if path is not None:
|
||||
if len(path) == 1:
|
||||
g.watering(path[0])
|
||||
path = None
|
||||
else:
|
||||
a.display(path[1])
|
||||
a.display()
|
||||
clock.tick(60)
|
||||
|
||||
|
||||
g = Game()
|
||||
a = Agent()
|
||||
while not done:
|
||||
for event in pg.event.get():
|
||||
if event.type == pg.QUIT:
|
||||
done = True
|
||||
display_background()
|
||||
display_objects()
|
||||
clock.tick(60)
|
||||
game_loop()
|
||||
|
||||
pg.quit()
|
BIN
road.png
BIN
road.png
Binary file not shown.
Before Width: | Height: | Size: 241 B After Width: | Height: | Size: 284 B |
23
tile.py
23
tile.py
@ -1,7 +1,22 @@
|
||||
from config import *
|
||||
|
||||
|
||||
class Tile:
|
||||
def __init__(self, a, b, x, y):
|
||||
def __init__(self, a, b, pos, parent=None):
|
||||
self.ground = a
|
||||
self.object = b
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.h = 0
|
||||
self.pos = pos
|
||||
self.x = self.pos[0]
|
||||
self.y = self.pos[1]
|
||||
self.w = 100
|
||||
self.wu = 0
|
||||
|
||||
def water_usage(self):
|
||||
if self.object == rose:
|
||||
self.wu = 30
|
||||
elif self.object == tulip:
|
||||
self.wu = 10
|
||||
elif self.object == orchid:
|
||||
self.wu = 20
|
||||
elif self.object == sunflower:
|
||||
self.wu = 40
|
||||
|
Loading…
Reference in New Issue
Block a user