# -*- coding: utf-8 -*- # # Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Python compatibility wrappers.""" from __future__ import absolute_import import itertools import sys from struct import pack MAX_INT = sys.maxsize MAX_INT64 = (1 << 63) - 1 MAX_INT32 = (1 << 31) - 1 MAX_INT16 = (1 << 15) - 1 PY2 = sys.version_info[0] == 2 # Determine the word size of the processor. if MAX_INT == MAX_INT64: # 64-bit processor. MACHINE_WORD_SIZE = 64 elif MAX_INT == MAX_INT32: # 32-bit processor. MACHINE_WORD_SIZE = 32 else: # Else we just assume 64-bit processor keeping up with modern times. MACHINE_WORD_SIZE = 64 if PY2: integer_types = (int, long) range = xrange zip = itertools.izip else: integer_types = (int, ) range = range zip = zip def write_to_stdout(data): """Writes bytes to stdout :type data: bytes """ if PY2: sys.stdout.write(data) else: # On Py3 we must use the buffer interface to write bytes. sys.stdout.buffer.write(data) def is_bytes(obj): """ Determines whether the given value is a byte string. :param obj: The value to test. :returns: ``True`` if ``value`` is a byte string; ``False`` otherwise. """ return isinstance(obj, bytes) def is_integer(obj): """ Determines whether the given value is an integer. :param obj: The value to test. :returns: ``True`` if ``value`` is an integer; ``False`` otherwise. """ return isinstance(obj, integer_types) def byte(num): """ Converts a number between 0 and 255 (both inclusive) to a base-256 (byte) representation. Use it as a replacement for ``chr`` where you are expecting a byte because this will work on all current versions of Python:: :param num: An unsigned integer between 0 and 255 (both inclusive). :returns: A single byte. """ return pack("B", num) def xor_bytes(b1, b2): """ Returns the bitwise XOR result between two bytes objects, b1 ^ b2. Bitwise XOR operation is commutative, so order of parameters doesn't generate different results. If parameters have different length, extra length of the largest one is ignored. :param b1: First bytes object. :param b2: Second bytes object. :returns: Bytes object, result of XOR operation. """ if PY2: return ''.join(byte(ord(x) ^ ord(y)) for x, y in zip(b1, b2)) return bytes(x ^ y for x, y in zip(b1, b2)) def get_word_alignment(num, force_arch=64, _machine_word_size=MACHINE_WORD_SIZE): """ Returns alignment details for the given number based on the platform Python is running on. :param num: Unsigned integral number. :param force_arch: If you don't want to use 64-bit unsigned chunks, set this to anything other than 64. 32-bit chunks will be preferred then. Default 64 will be used when on a 64-bit machine. :param _machine_word_size: (Internal) The machine word size used for alignment. :returns: 4-tuple:: (word_bits, word_bytes, max_uint, packing_format_type) """ max_uint64 = 0xffffffffffffffff max_uint32 = 0xffffffff max_uint16 = 0xffff max_uint8 = 0xff if force_arch == 64 and _machine_word_size >= 64 and num > max_uint32: # 64-bit unsigned integer. return 64, 8, max_uint64, "Q" elif num > max_uint16: # 32-bit unsigned integer return 32, 4, max_uint32, "L" elif num > max_uint8: # 16-bit unsigned integer. return 16, 2, max_uint16, "H" else: # 8-bit unsigned integer. return 8, 1, max_uint8, "B"