Initial commit

This commit is contained in:
Jakub Kaczmarek 2023-02-16 18:21:17 +01:00
commit e1b933bf4d
26 changed files with 20092 additions and 0 deletions

5
.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
data
out/t5
out/gpt2
out/roberta
.cache_training

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

10
bart.py Normal file
View File

@ -0,0 +1,10 @@
from transformers import BartConfig, BartForSequenceClassification, BartModel
from torch import nn
class BartForClassification(BartForSequenceClassification):
def __init__(self, config: BartConfig):
self.config = config
self.bart = BartForSequenceClassification(config)
self.bart.out_proj = nn.Linear(768, 4)

154
gpt2.py Normal file
View File

@ -0,0 +1,154 @@
import torch
from torch import nn
from transformers import GPT2PreTrainedModel, GPT2Model
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
class GPT2ForSequenceClassification(GPT2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPT2Model(config)
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
class GPT2ClassificationHeadCustom(nn.Module):
def __init__(self, config):
super().__init__()
hidden_size = config.n_embd
self.dense_1_input = nn.Linear(hidden_size, 2 * hidden_size)
self.dense_1_hidden = nn.Linear(hidden_size, 2 * hidden_size)
self.dense_2 = nn.Linear(4 * hidden_size, 4 * hidden_size)
self.dense_3 = nn.Linear(4 * hidden_size, 4 * hidden_size)
self.dense_4 = nn.Linear(4 * hidden_size, hidden_size)
self.dropout = nn.Dropout(config.resid_pdrop)
self.out_proj = nn.Linear(hidden_size, config.num_labels, bias=False)
def forward(self, x, **kwargs):
if 'hidden_states' in kwargs and kwargs['hidden_states'] is not None:
# Get hidden states from last layer
hidden = kwargs['hidden_states'][-1]
else:
hidden = torch.zeros(x.size(), dtype=x.dtype, device=x.device)
x = self.dense_1_input(x)
x = torch.relu(x)
x = self.dropout(x)
hidden = self.dense_1_hidden(hidden)
hidden = torch.relu(hidden)
hidden = self.dropout(hidden)
x = torch.cat((x, hidden), dim=2)
x = self.dense_2(x)
x = torch.relu(x)
x = self.dense_3(x)
x = torch.relu(x)
x = self.dense_4(x)
x = torch.relu(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class GPT2ForSequenceClassificationCustom(GPT2ForSequenceClassification):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPT2Model(config)
self.score = GPT2ClassificationHeadCustom(config)
self.init_weights()
# Model parallel
self.model_parallel = False
self.device_map = None
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
if return_dict:
logits = self.score(hidden_states, hidden_states=transformer_outputs.hidden_states)
else:
raise NotImplemented('Not implemented for using non-dictionary object')
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
assert (
self.config.pad_token_id is not None or batch_size == 1
), "Cannot handle batch sizes > 1 if no padding token is defined."
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
else:
sequence_lengths = -1
pooled_logits = logits[range(batch_size), sequence_lengths]
loss = None
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = nn.MSELoss()
loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1))
else:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)

View File

@ -0,0 +1,53 @@
---
tags:
- generated_from_trainer
model-index:
- name: gpt2_results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2_results
This model is a fine-tuned version of [out/gpt2](https://huggingface.co/out/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.3020
- eval_accuracy: 0.9195
- eval_runtime: 24.1139
- eval_samples_per_second: 82.94
- eval_steps_per_second: 10.367
- step: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2

View File

@ -0,0 +1,8 @@
{
"eval_accuracy": 0.9194999933242798,
"eval_loss": 0.3020096719264984,
"eval_runtime": 24.1139,
"eval_samples": 2000,
"eval_samples_per_second": 82.94,
"eval_steps_per_second": 10.367
}

View File

@ -0,0 +1,8 @@
{
"eval_accuracy": 0.9194999933242798,
"eval_loss": 0.3020096719264984,
"eval_runtime": 24.1139,
"eval_samples": 2000,
"eval_samples_per_second": 82.94,
"eval_steps_per_second": 10.367
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,53 @@
---
tags:
- generated_from_trainer
model-index:
- name: roberta_results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta_results
This model is a fine-tuned version of [out/roberta](https://huggingface.co/out/roberta) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.2960
- eval_accuracy: 0.9230
- eval_runtime: 17.8166
- eval_samples_per_second: 112.255
- eval_steps_per_second: 14.032
- step: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2

View File

@ -0,0 +1,8 @@
{
"eval_accuracy": 0.9229999780654907,
"eval_loss": 0.29598742723464966,
"eval_runtime": 17.8166,
"eval_samples": 2000,
"eval_samples_per_second": 112.255,
"eval_steps_per_second": 14.032
}

View File

@ -0,0 +1,8 @@
{
"eval_accuracy": 0.9229999780654907,
"eval_loss": 0.29598742723464966,
"eval_runtime": 17.8166,
"eval_samples": 2000,
"eval_samples_per_second": 112.255,
"eval_steps_per_second": 14.032
}

File diff suppressed because it is too large Load Diff

53
out/t5_results/README.md Normal file
View File

@ -0,0 +1,53 @@
---
tags:
- generated_from_trainer
model-index:
- name: t5_results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5_results
This model is a fine-tuned version of [out/t5](https://huggingface.co/out/t5) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.2139
- eval_accuracy: 0.4675
- eval_runtime: 40.5651
- eval_samples_per_second: 49.303
- eval_steps_per_second: 6.163
- step: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2

View File

@ -0,0 +1,8 @@
{
"eval_accuracy": 0.4675000011920929,
"eval_loss": 1.213880181312561,
"eval_runtime": 40.5651,
"eval_samples": 2000,
"eval_samples_per_second": 49.303,
"eval_steps_per_second": 6.163
}

View File

@ -0,0 +1,8 @@
{
"eval_accuracy": 0.4675000011920929,
"eval_loss": 1.213880181312561,
"eval_runtime": 40.5651,
"eval_samples": 2000,
"eval_samples_per_second": 49.303,
"eval_steps_per_second": 6.163
}

File diff suppressed because it is too large Load Diff

114
preparer_ag_nenws.py Normal file
View File

@ -0,0 +1,114 @@
#!/usr/bin/env python3
import json
import logging
from pathlib import Path
from typing import List, Dict
from datasets import load_dataset
logger = logging.getLogger(__name__)
MAP_LABEL_TRANSLATION = {
0: 'world',
1: 'sport',
2: 'business',
3: 'scitech'
}
def save_as_translations(original_save_path: Path, data_to_save: List[Dict]) -> None:
file_name = 's2s-' + original_save_path.name
file_path = original_save_path.parent / file_name
print(f'Saving into: {file_path}')
with open(file_path, 'wt') as f_write:
for data_line in data_to_save:
label = data_line['label']
new_label = MAP_LABEL_TRANSLATION[label]
data_line['label'] = new_label
data_line_str = json.dumps(data_line)
f_write.write(f'{data_line_str}\n')
def main() -> None:
loaded_data = load_dataset('ag_news')
logger.info(f'Loaded dataset ag_news: {loaded_data}')
save_path = Path('data/')
save_train_path = save_path / 'train.json'
save_valid_path = save_path / 'valid.json'
save_test_path = save_path / 'test.json'
if not save_path.exists():
save_path.mkdir()
# Read train and validation data
data_train, data_valid, data_test = [], [], []
for source_data, dataset, max_size in [
(loaded_data['train'], data_train, None),
(loaded_data['test'], data_valid, None)
]:
for i, data in enumerate(source_data):
if max_size is not None and i >= max_size:
break
data_line = {
'label': int(data['label']),
'text': data['text'],
}
dataset.append(data_line)
logger.info(f'Train: {len(data_train):6d}')
# Split validation set into 2 classes for validation and test splitting
world, sport, business, scitech = [], [], [], []
for data in data_valid:
label = data['label']
if label == 0:
world.append(data)
elif label == 1:
sport.append(data)
elif label == 2:
business.append(data)
elif label == 3:
scitech.append(data)
logger.info(f'World: {len(world):6d}')
logger.info(f'Sport: {len(sport):6d}')
logger.info(f'Business: {len(business):6d}')
logger.info(f'Scitech: {len(scitech):6d}')
print(world)
print(f'World: {len(world)}')
print(f'Sport: {len(sport):6d}')
print(f'Business: {len(business):6d}')
print(f'Scitech: {len(scitech):6d}')
# Split 2 classes into validation and test
size_half_world = int(len(world) / 2)
size_half_sport = int(len(sport) / 2)
size_half_business = int(len(business) / 2)
size_half_scitech = int(len(scitech) / 2)
logger.info(f'Valid: {len(data_valid):6d}')
logger.info(f'Test : {len(data_test):6d}')
data_valid = world[:size_half_world] + sport[:size_half_sport] + business[:size_half_business] + scitech[:size_half_scitech]
data_test = world[size_half_world:] + sport[size_half_sport:] + business[size_half_business:] + scitech[size_half_scitech:]
# Save files
for file_path, data_to_save in [
(save_train_path, data_train),
(save_valid_path, data_valid),
(save_test_path, data_test)
]:
print(f'Saving into: {file_path}')
with open(file_path, 'wt') as f_write:
for data_line in data_to_save:
data_line_str = json.dumps(data_line)
f_write.write(f'{data_line_str}\n')
save_as_translations(file_path, data_to_save)
if __name__ == '__main__':
main()

7335
projektV2.ipynb Normal file

File diff suppressed because it is too large Load Diff

54
roberta.py Normal file
View File

@ -0,0 +1,54 @@
from typing import Optional, Union, Tuple
import torch
from torch import nn
from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss
from transformers import RobertaForSequenceClassification, RobertaModel
from transformers.modeling_outputs import SequenceClassifierOutput
# Simple version #
class RobertaClassificationHeadCustomSimple(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
hidden_size = config.hidden_size
self.dense_1 = nn.Linear(hidden_size, 4 * hidden_size)
self.dense_2 = nn.Linear(4 * hidden_size, hidden_size)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Linear(hidden_size, config.num_labels)
self.activation = nn.GELU()
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dense_1(x)
x = self.activation(x)
x = self.dropout(x)
x = self.dense_2(x)
x = self.activation(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class RobertaForSequenceClassificationCustomSimple(RobertaForSequenceClassification):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.roberta = RobertaModel(config, add_pooling_layer=False)
self.classifier = RobertaClassificationHeadCustomSimple(config)
# Initialize weights and apply final processing
self.post_init()

685
run_glue.py Normal file
View File

@ -0,0 +1,685 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE."""
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
import logging
import os
import random
import sys
from collections import defaultdict
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
from datasets import load_dataset
import evaluate
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
PretrainedConfig,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from roberta import RobertaForSequenceClassificationCustomSimple
from gpt2 import GPT2ForSequenceClassificationCustom
from t5 import T5ForClassification
from transformers import BartForSequenceClassification
MODEL_NAME_TO_CLASS = {
'roberta_simple': RobertaForSequenceClassificationCustomSimple,
'gpt2_hidden': GPT2ForSequenceClassificationCustom,
't5_custom': T5ForClassification,
'bart_base': BartForSequenceClassification,
}
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.23.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
task_to_keys = {
"cola": ("sentence", None),
"mnli": ("premise", "hypothesis"),
"mrpc": ("sentence1", "sentence2"),
"qnli": ("question", "sentence"),
"qqp": ("question1", "question2"),
"rte": ("sentence1", "sentence2"),
"sst2": ("sentence", None),
"stsb": ("sentence1", "sentence2"),
"wnli": ("sentence1", "sentence2"),
}
logger = logging.getLogger(__name__)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
task_name: Optional[str] = field(
default=None,
metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
)
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
max_seq_length: int = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
pad_to_max_length: bool = field(
default=True,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the training data."}
)
validation_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the validation data."}
)
test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
def __post_init__(self):
if self.task_name is not None:
self.task_name = self.task_name.lower()
if self.task_name not in task_to_keys.keys():
raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
elif self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.")
else:
train_extension = self.train_file.split(".")[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
validation_extension = self.validation_file.split(".")[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
ignore_mismatched_sizes: bool = field(
default=False,
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
)
custom_model: str = field(
default=None,
metadata={
"help": "Use custom implementation from available list",
"choices": list(MODEL_NAME_TO_CLASS.keys()),
},
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_glue", model_args, data_args)
if 'bart' in model_args.model_name_or_path:
model_args.ignore_mismatched_sizes = True
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
# sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
# label if at least two columns are provided.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.task_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
"glue",
data_args.task_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
elif data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
data_files = {"train": data_args.train_file, "validation": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
train_extension = data_args.train_file.split(".")[-1]
test_extension = data_args.test_file.split(".")[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
data_files["test"] = data_args.test_file
else:
raise ValueError("Need either a GLUE task or a test file for `do_predict`.")
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}")
if data_args.train_file.endswith(".csv"):
# Loading a dataset from local csv files
raw_datasets = load_dataset(
"csv",
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
# Loading a dataset from local json files
raw_datasets = load_dataset(
"json",
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
if data_args.task_name is not None:
is_regression = data_args.task_name == "stsb"
if not is_regression:
label_list = raw_datasets["train"].features["label"].names
num_labels = len(label_list)
else:
num_labels = 1
else:
# Trying to have good defaults here, don't hesitate to tweak to your needs.
is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
if is_regression:
num_labels = 1
else:
# A useful fast method:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
label_list = raw_datasets["train"].unique("label")
label_list.sort() # Let's sort it for determinism
num_labels = len(label_list)
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
custom_model = model_args.custom_model
if custom_model is not None:
# Check model and implementation is the same
if 'roberta' in custom_model and 'roberta' not in model_args.model_name_or_path:
raise RuntimeError('Model and custom implementation should be the same type: RoBERTa')
elif 'gpt2' in custom_model and 'gpt2' not in model_args.model_name_or_path:
raise RuntimeError('Model and custom implementation should be the same type: GPT-2')
# Set custom configuration in model configuration
config.use_hidden_states = 'hidden' in custom_model
logger.info(f'Using hidden states in model: {config.use_hidden_states}')
print(f'-------------------------------------------------------- Using hidden: {config.use_hidden_states}')
# Get class to initialize model
model_cls = MODEL_NAME_TO_CLASS[custom_model]
else:
model_cls = AutoModelForSequenceClassification
logger.info(f'Using implementation from class: {model_cls.__name__}')
model = model_cls.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
print(model)
if 'gpt2' in tokenizer.name_or_path and tokenizer.pad_token is None:
logger.info(f'Set PAD token to EOS: {tokenizer.eos_token}')
tokenizer._pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
# Preprocessing the raw_datasets
if data_args.task_name is not None:
sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
# Preprocessing the raw_datasets
if data_args.task_name is not None:
sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
else:
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
sentence1_key, sentence2_key = "sentence1", "sentence2"
else:
if len(non_label_column_names) >= 2:
sentence1_key, sentence2_key = non_label_column_names[:2]
else:
sentence1_key, sentence2_key = non_label_column_names[0], None
# Padding strategy
if data_args.pad_to_max_length:
padding = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
padding = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
label_to_id = None
if (
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
and data_args.task_name is not None
and not is_regression
):
# Some have all caps in their config, some don't.
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
else:
logger.warning(
"Your model seems to have been trained with labels, but they don't match the dataset: ",
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
"\nIgnoring the model labels as a result.",
)
elif data_args.task_name is None and not is_regression:
label_to_id = {v: i for i, v in enumerate(label_list)}
if label_to_id is not None:
model.config.label2id = label_to_id
model.config.id2label = {id: label for label, id in config.label2id.items()}
elif data_args.task_name is not None and not is_regression:
model.config.label2id = {l: i for i, l in enumerate(label_list)}
model.config.id2label = {id: label for label, id in config.label2id.items()}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
def preprocess_function(examples):
# Tokenize the texts
args = (
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
)
result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
# Map labels to IDs (not necessary for GLUE tasks)
if label_to_id is not None and "label" in examples:
result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
return result
with training_args.main_process_first(desc="dataset map pre-processing"):
raw_datasets = raw_datasets.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset",
)
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
label_to_indexes = defaultdict(list)
for index, eval_sample in enumerate(eval_dataset):
label_to_indexes[eval_sample['label']].append(index)
max_samples_per_label = int(max_eval_samples / len(label_to_indexes))
eval_sample_indexes = []
for label, indexes in label_to_indexes.items():
eval_sample_indexes.extend(indexes[:max_samples_per_label])
logger.info(f"Set {max_samples_per_label} samples for {label}-class")
eval_sample_indexes.sort()
eval_dataset = eval_dataset.select(eval_sample_indexes)
if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = raw_datasets["test_matched" if data_args.task_name == "mnli" else "test"]
if data_args.max_predict_samples is not None:
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
predict_dataset = predict_dataset.select(range(max_predict_samples))
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# Get the metric function
if data_args.task_name is not None:
metric = evaluate.load("glue", data_args.task_name)
else:
metric = evaluate.load("accuracy")
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
if data_args.task_name is not None:
result = metric.compute(predictions=preds, references=p.label_ids)
if len(result) > 1:
result["combined_score"] = np.mean(list(result.values())).item()
return result
elif is_regression:
return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
else:
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
# Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if
# we already did the padding.
if data_args.pad_to_max_length:
data_collator = default_data_collator
elif training_args.fp16:
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
else:
data_collator = None
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=data_collator,
)
# Training
ignore_keys_for_eval = ['hidden_states', 'attentions', 'past_key_values']
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint, ignore_keys_for_eval=ignore_keys_for_eval)
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
# Loop to handle MNLI double evaluation (matched, mis-matched)
tasks = [data_args.task_name]
eval_datasets = [eval_dataset]
if data_args.task_name == "mnli":
tasks.append("mnli-mm")
valid_mm_dataset = raw_datasets["validation_mismatched"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(valid_mm_dataset), data_args.max_eval_samples)
valid_mm_dataset = valid_mm_dataset.select(range(max_eval_samples))
eval_datasets.append(valid_mm_dataset)
combined = {}
for eval_dataset, task in zip(eval_datasets, tasks):
metrics = trainer.evaluate(eval_dataset=eval_dataset, ignore_keys=ignore_keys_for_eval)
max_eval_samples = (
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
if task == "mnli-mm":
metrics = {k + "_mm": v for k, v in metrics.items()}
if task is not None and "mnli" in task:
combined.update(metrics)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", combined if task is not None and "mnli" in task else metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
# Loop to handle MNLI double evaluation (matched, mis-matched)
tasks = [data_args.task_name]
predict_datasets = [predict_dataset]
if data_args.task_name == "mnli":
tasks.append("mnli-mm")
predict_datasets.append(raw_datasets["test_mismatched"])
for predict_dataset, task in zip(predict_datasets, tasks):
# Removing the `label` columns because it contains -1 and Trainer won't like that.
predict_dataset = predict_dataset.remove_columns("label")
predictions = trainer.predict(predict_dataset, metric_key_prefix="predict", ignore_keys=ignore_keys_for_eval).predictions
predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt")
if trainer.is_world_process_zero():
with open(output_predict_file, "w") as writer:
logger.info(f"***** Predict results {task} *****")
writer.write("index\tprediction\n")
for index, item in enumerate(predictions):
if is_regression:
writer.write(f"{index}\t{item:3.3f}\n")
else:
item = label_list[item]
writer.write(f"{index}\t{item}\n")
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
if data_args.task_name is not None:
kwargs["language"] = "en"
kwargs["dataset_tags"] = "glue"
kwargs["dataset_args"] = data_args.task_name
kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}"
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()

125
t5.py Normal file
View File

@ -0,0 +1,125 @@
import torch
import copy
from torch import nn
from transformers import T5PreTrainedModel, T5Config
from transformers.models.t5.modeling_t5 import T5Stack
from transformers.modeling_outputs import SequenceClassifierOutput
class T5ClassificationHead(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
self.dense_in = nn.Linear(config.d_model, 768)
self.dense = nn.Linear(768, 768)
self.dense_out = nn.Linear(768, config.num_labels)
self.dropout = nn.Dropout(0.1)
def forward(self, features, **kwargs):
x = features[:, 0, :]
x = self.dropout(x)
x = self.dense_in(x)
x = torch.relu(x)
x = self.dropout(x)
x = self.dense(x)
x = torch.relu(x)
x = self.dropout(x)
x = self.dense_out(x)
return x
class T5ForClassification(T5PreTrainedModel):
def __init__(self, config: T5Config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = T5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = T5Stack(decoder_config, self.shared)
modules_to_freeze = [self.encoder.block[i].layer[0] for i in range(len(self.encoder.block))]
modules_to_freeze.extend([self.decoder.block[i].layer[0] for i in range(len(self.decoder.block))])
modules_to_freeze.extend([self.decoder.block[i].layer[1] for i in range(len(self.decoder.block))])
for module in modules_to_freeze:
for param in module.parameters():
param.requires_grad = False
self.lm_head = T5ClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
def forward(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.encoder(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
outputs = self.decoder(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
return SequenceClassifierOutput(
loss=loss,
logits=logits,
)